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Abstract— Simple and efficient computational algorithms for nonpara-
metric wavelet-based identification of nonlinearities in Hammerstein
systems driven by random signals are proposed. They exploit binary
grid interpolations of compactly supported wavelet functions. The main
contribution consists in showing how to use the wavelet values from
the binary grid together with the fast wavelet algorithms to obtain the
practical counterparts of the wavelet-based estimates for irregularly and
randomly spaced data, without any loss of the asymptotic accuracy. The
convergence and the rates of convergence are examined for the new
algorithms and, in particular, conditions for the optimal convergence
speed are presented. Efficiency of the algorithms for a finite number of
data is also illustrated by means of the computer simulations.

I. INTRODUCTION AND PRELIMINARIES

Growing popularity of compactly supported wavelets and their
successful applications in different areas seem to have two reasons: (7)
an effective (parsimonious) wavelet representation of a broad class of
functions, [1], accompanied by (ii) the existence of fast algorithms for
wavelet computations, [2]. These distinguishing features are achieved
in spite of the lack of the explicit representations of the wavelet func-
tions, which in general are defined pointwise by numerical procedures
and in fact can be efficiently computed for dyadic arguments only [3],
[4]. Obviously, this is not a relevant obstacle in applications which
operate on equidistantly spaced data like, e.g., time series denoising
[5]. However, in other applications, especially like considered in this
note nonparametric system identification tasks, where the data are
usually distributed at random (cf. [6], [7]), obtaining the practical and
effective computational counterparts of existing wavelet algorithms is
a nontrivial due to: (i) the need of computing the empirical wavelet
coefficients from random data and (i) the necessity of evaluation of
the values of wavelet estimates at arbitrary points. In the literature the
former problem is solved mainly by data-dependent preprocessing,
e.g. by interpolating the input-output data in order to obtain their
approximated values at binary grid points [8], [9], [10], or by adapting
the second generation wavelets to an irregular (e.g. random) grid
at hand [11], [12]. In this work we solve both issues exploiting
a simple and direct approach in which standard first generation
wavelets are interpolated instead. This idea was already proposed
in [13] and applied there to a class of scaling function estimates
recovering a nonlinearity in Hammerstein systems [14] — a similar
approach, assuming random input was also applied independently in
[15, p. 47], however in a context of static systems. Here, we extend
the idea to a wider class of wavelet estimates, elaborated in [7],
decompose and refine the interpolation error bounds established in
[13], and show how the influence of the interpolation error can be
neutralized with a growing number of data. As a consequence, the
beneficial features of the theoretical wavelet identification algorithms
(like e.g. the best possible rate of convergence established in [7])
can automatically be conveyed to their easy-to-compute counterparts.
Furthermore, by combining the proposed interpolators with a widely
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used fast wavelet transform (FWT), our algorithm processes random
data with a numerical complexity of order O (N), where N is a
number of measurements, i.e., with the order typical for standard
wavelet algorithms based on FWT with equidistant input data.
Hammerstein system. The system, being a cascade of a static
nonlinearity and linear dynamics (cf. Fig. 1a), is an archetype for
the ample class of block-oriented nonlinear dynamic systems which
have gained popularity in various applications (cf. [16]), and is a
standard ’example’ system considered in the literature; see e.g. [6],
[71, [17], [18].
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Fig. 1. a) The Hammerstein system b) The same system seen by identification
algorithm

The following assumptions (typical for nonparametric system iden-
tification tasks; ¢f. [6], [7], [13], [18]) hold in the paper: /) the input
signal, {x}, and the external additive noise, {zj}, are zero-mean
random processes with finite variances; they are mutually independent
and {x} is an i.i.d. process with a density function f (x), 2) the
density, f (x), and the static nonlinearity, m (x), are bounded and
continuous with some Holder exponents v, v,, > 0 (in particular,
they do not have to be invertible), 3) the linear dynamic subsystem is
asymptotically stable and its impulse response, {)\;}, is unknown, 4)
only a set of input-output measurements {(xr,yx)}, k =1,..., N,
is available.

From an input-output data point of view, the Hammerstein
system in Fig. la can be described by the equation, y, =
Yoo Aim (zh—i) + zx and rewritten to the equivalent form, yy. =
w (zk) + &, + 2k, in which past observations {x_;} induce an addi-
tive stationary ’system noise’ £, = > X; [m (zx—i) — Em (x1)],
correlated because of the own system dynamic, and disturbing
together with the external one, {2}, the output of a nonlinearity
p(z) = dom () + ¢, where ¢ = Em (z1) )~ i is a system
dependent constant; see Fig. 1b. This leads eventually to the ob-
servation that u(z) = FE (yx|zx = ), ie. that p(x) is in fact a
regression function of y, on xx; ¢f [6], [18].

Remark 1: Using the data {(x,yx)} we can only identify u (z),

a scaled and translated version of m (z). This is an inevitable
consequence of the composite structure of the Hammerstein system
and the inaccessibility of the interconnecting inner signal (see [6], [7],
[18]). Moreover, that the input {z} is a white process, and hence
a persistently exciting signal of infinite order [19], makes possible
identification of the system nonlinearity by a direct estimation of
regression function p (z), regardless the structure of the dynamics.
Otherwise, one needs to apply other approaches like e.g. those for
Wiener systems, [20].
The reference algorithm. Wavelet estimates of regression functions
have been primarily applied to nonparametric system identification in
[18] and then further studied in e.g. [7], [21]. As it was proven in [7]
— due to superior approximation abilities of the compactly supported
wavelets — they outperform classical nonparametric orthogonal series
estimates (e.g. polynomial or trigonometric, c¢f. [6]). The following
estimate, proposed and examined in [7] (¢f also [12, Sec. 3.1] or [6],
[18]), will be referred to as the reference algorithm:

fig (x) = g () / fxc (x) (1)

where g (z) and fx (z) are the estimates of the wavelet approx-
imations at some scale K acting as a smoothing parameter, cf. [7],
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[14, Remark 5.1], of a product g (x) = u () f (x), and of the input
signal density f (x). They are presented below in a vector-like form
for conciseness and to emphasize similarities of the computations
needed by jx () and fx (z):

gx () e Qnrn
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where [s1,s2] and [t1, 2] are supports of the father and mother
wavelets, ¢ and 1, respectively. We assume that they are continuous
with a Holder exponent v, > 0, and that {¢,,,}. {¢,..}, for
m = M,M +1,..., some fixed M, and n = ..., —1,0,1,...,
constitute an orthogonal basis of L? (R) space. The properties of the
reference algorithm are established by the following lemma, being a
’decomposed’ version of the Theorem 2 in [7] with respect to the
numerator of the estimate, and pointing out the behavior of the mean
square error components (see proof of Th. 2 in [7]).

Lemma I: Let the wavelet family in the estimate [i () in (1)
have p vanishing moments. Since the following error bounds hold
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bias jx (z) = where v = min {vm, vy, p} (4)

var gk () < where ¢, ~ sup ¢” (z) ®)
x

for any z, then selecting the estimate scale K according to the rule
K = |5 log, N| ©)

makes the reference estimate [t (x) converge to u (z) as N — oo
at the rate

fig () = p(z) + O(N™ T ) in probability, (7

for arbitrary x at which f (x) > 0.

Note that the convergence given in (7) does not depend on a
structure of the dynamic subsystem {\;}; ¢f. discussion in [7], [18].
Moreover, provided that p > min {vy,, v}, this rate is asymptoti-
cally optimal, i.e., the best attainable by any nonparametric estimate
of a nonlinearity for which the Holder exponent is only known (see
[22]). Clearly, these properties are worthy to be maintained in an
implementation.

II. THE COMPUTATIONAL ALGORITHM

Since the input signal has a density and its realizations {zx} can
take any values in the regions where f (z) > 0, a practical use of the
reference estimate (1)-(3) is strongly hindered by the need to compute
the wavelet values in arbitrary (random) points. To overcome this
difficulty we simply replace the wavelet functions in the reference
algorithm by their piecewise-constant interpolators.

Construction. Denote by

?" @) = o (L 2L) ana 0 (o) =0 (E2572L) 9)

the interpolators of the original father and mother wavelet functions
o and 1, where the true values of wavelet functions for arbitrary
argument, x, are approximated by their values computed for the

nearest neighbor of x located on a dyadic grid 2%, H =0,1,.. ;
the parameter H plays the role of an interpolation scale. Their scaled
and translated versions are defined as

~ M QHAM oM 1 /o
Birn () 27¢ <|_2H—+Z\/:ICJ - n) &)

- " m 2H+nz‘27nz+1/2
wmn (1’) = 272 1/) (L 2H+m J - n)

or, equivalently, as @2 (x ) = 2% gp(QM 2 —n) and wmn( ) =
2% y(2mz —n), where 2 = L2H+2'x+1/2j /272 and where
m = M,...,K — 1. The needed values of wavelet functions at
the grid points can easily be precomputed by using e.g. the Strang
algorithm described in [4]; cf. also [3], [23] and [13, Appendix
IV]. The computational counterpart of the estimate fi - (x), obtained
by plugging @&~ and &Zn in place of ¢, and %, in (1)-
(3), will be denoted as Gf (z), its nominator and denommator as
gK( ) and f# (z), and the coefficients as on,L,aM,L,ﬂ and
b, respectively.

Calculations. Evaluating of the estimate 7z (x) can be split in two
separate phases:

mn?

1) Computing the estimate of the coefficients from the measure-
ment data set, and
2) Computing the resulting estimate value for a given point x.

In the first phase we compute the coefficients &%, a% My ﬁmn,
and bE | “activated’ by a given measurement set {(Uﬁk»yk)}k:p ie.
these with the translation factors n ranging (for @ = miny, {x} and
b = maxy, {xx}) over

=2Ma—s5],...,|2Mb—s1] and n = [2Ma—t2],..., |27 b—t1 |
(10)
for m = M,..., K — 1. For this purpose we employ the standard

Mallat’s FWT transform (see [2, p. 255] and cf. (20) in Appendix).
The transform’s initial coefficients &, and @f,, are calculated,
at the scale K, from the raw (non-ordered) data {(zx,yx)} by the
recursive versions of the formulas in (3)

G H (k) G (k=1) y
K - K _H k
—Hf(lk) = 5 7H,7(1k71) +  +Pkn (xk)[ 1 } (11)
a’Kn a’Kn
for kK = 1,...,N and n = [28az, — s2],...,|2%2r — 1],
where ,%0) = dﬁ;&o) = 0. To accomplish the second phase we

s1mp1y reuse the reference estimate (1) with interpolators @4, (z)
and wmn( ), m = M,...,K — 1, instead of ¢,,, (z) and
Y mn (), Which, due to its "local’ pointwise character, incorporates
into computations only terms which are in a cone of influence of x;
[2, p. 175].
Convergence rate. Taking the interpolators in place of the original
wavelet functions certainly introduces an additional error. This error,
referred to as an interpolation error, is evaluated in the Appendix;
see (19). The impact of the interpolation error on the properties of
the computational algorithm ﬂﬁ (z) (as compared to the reference
estimate properties) is characterized in the proposition below. The
proper rule for selection of the interpolation scale H that guarantees
that the computational algorithm il (z) preserves the reference rate
of convergence (7), is also introduced.

Proposition 2: The following bound for the bias error of g (z)
holds (cf. (4) and see Fig. 2)

-0 (Q*WK) +0 (2*71(H+M+1))
—_— —

bias g () bias §g(x)

bias g1 (z) 12)

where 17 = min {v,, 1}, and comprises the bias error present in the
reference algorithm, bias gx (z), and additional bias introduced by



the interpolation inaccuracy error, bias gL (z). The latter includes in
turn the following terms (see Appendix for definitions)

biasyg (l’) _ O(an(H+K+l)72n(K7M)) + O(zf’q(H+K+1))(13)

biasq §g(a:) biasg Fyg(ac)

+ 0(2717(1-1+]\/[+1)) + O(2f’y]¥177](H+M+l)) (14)

bias, gfg (z) bias,, glfg (z)

being the upper bounds of the errors of the first phase of computa-
tions (bias, g1 (z) and biass Gi (x)), and of the errors introduced
in the second phase of computing g& (z) (i.e. bias, gk (z) and
biasy it (x)), respectively. The bound of the variance error remains
the same as in the reference algorithm, cf. (5)

var gi (x) < ¢, - 25 /N (15)

for any x. If the scale K in the estimate is governed by the rule (6)
and the interpolation scale H is selected as
- |2
H= LWKJ , (16)
then the estimate - () converges to the nonlinearity j () as N —
oo with the rate

B (@) = p(x)+0 (N‘ﬁ) in probability,  (17)
for each point = such that f (z) > 0, i.e. in a similar way as the
reference estimate fi (z).
Proof: See Appendix. |
Remark 2: The decomposition of the interpolation error in (13)-
(14) shows that if in the second phase the estimate ai () is
computed in points placed on binary grid o~ (H+M) exclusively, then
the summands in (14), i.e., the terms bias,, g1 () and bias, i (),
are both zero and therefore the order of interpolation part of the
overall bias error reduces to biasgit (z) = Q27 "HFEFD). o
Fig. 2b. This means, amongst others, that in such a case the rule (16)
can be weakened, e.g. to the form (c¢f (22))

H= {¥KJ (18)
without a deterioration of the convergence rate in (17).

To make the weakened rule (18) valid for arbitrary arguments,
a biorthogonal wavelet family with spline wavelets on a synthesis
side (cf. [3, pp. 271-278]) can be used instead of the orthogonal
one. The ’second phase’ error components in (14), %¢ gl (z) and
bias, §if (x), annihilate in this case since spline wavelets are given
in closed forms and hence do not need interpolation.
Computational complexity. We shall separately establish the com-
plexity of each phase of computations and will focus only on the
numerator i (z) since the computations needed in the denominator
are similar. We assume that the scale K is selected according to
the rule (6) and the scale M < K is positive. We also assume
that the values of wavelet functions at the required grid points are
precomputed and therefore do not influence the complexity of the
procedure.

Computing initial (finest scale) coefficients &%, for FWT requires
constant number (dependent merely on the length, so — si, of the
scaling function support; cf. (11)) of operations for each data pair
(zx,yr) and thus is of complexity O (V) only. In turn, performing
the FWT algorithm itself, requires (cf. (10))

@) (L2Mb —s1] —[2Ma — s2] + 1)

+0 (Kz_:l (12" —t1] — [2™a — t2] + 1)> ops.

m=M

Hence, the complexity of these steps is of order O (N) + O(2%) =
O(N)+ O(NY2 D) This means that the first phase of computa-
tions needs only O (N) operations, regardless of the actual value of
the global smoothness index y in (6) (i.e. independently of the nonlin-
earity m (z), input density function f (x), and the applied wavelet
family). In turn, the second phase, i.e. evaluation of the estimate
value, requires for a given point x merely (K — M + 1) (s2 — s1)
operations and therefore has (since M is a constant) the complexity
of order O (K) = O (log N).

Remark 3: The resulting complexity of the proposed wavelet coef-
ficients procedure is equal in order to the complexity of the standard
FWT algorithm. We would like to emphasize again that in our case
the input signal is neither sorted nor deterministic and equidistantly
spaced.

III. NUMERICAL EXPERIMENTS

All presented results concerning statistical properties of the compu-
tation algorithm 7% () are asymptotic in nature, i.e. refer to large
quantities of data. By means of numerical experiments we briefly
illustrate a behavior of ff () for small and moderate number of
measurements /N and scales K, H. To make the experiments close
to practical conditions, the scale K was governed by the practical
selection rule, K = |1/3 -log, N|, in which the factor, v = 1,
is set independently of the actual (usually unknown) smoothness of
m (z) and f (z), yielding a robust wavelet estimate (cf. [12, p. 652]
and the appropriate discussions in [7, Sec. V.C]); the initial scale
M was set to zero; cf. [24]. Daubechies wavelets with a wavelet
number p = 3 (having a smoothness index v, =~ 1.018, cf. [23,
p. 1570]) were employed (thus n = 1 and H = K, see (16)).
The input signal was uniformly distributed in the interval [0,1].
The nonlinearity was a polynomial, m (z) = 10(22® — 32 + z),
i.e. a non-invertible function. The dynamic subsystem had infinite
impulse response, A; = (0.9) "%, i =0, 1,.... The results, presented
in Figs 2a,b,d, show that the behavior of the computational algorithm,
ﬁg (), is consistent with the theoretical findings presented in the
paper. In particular:

o The graph in Fig. 2a confirms the necessity of adjusting the
interpolation scale H to the growing scale of the estimate K; the
fixed H makes the interpolation error component non-decreasing
(and the computational estimate diverging) in spite of the growth
of K; cf. also (12) and (16).

o The slope of the bias error (Fig. 2b) for H = 8 illustrates
the actual vanishing of the error summands, bias, g2t (x) and
biasy g (z) at grid points; ¢f. Proposition 2 and the conclusion
of Section II.

o Finally, Fig. 2d testifies that the behavior of the algorithm
i (x) fully resembles that of the much more computationally
demanding origin, jiy (z). (For the qualitative and critical
discussion of the properties of fi,; (x) we refer to [7, Sec. VI]).

IV. FINAL REMARKS

It is well known that wavelet functions can also be approxi-
mated by using so called cascade algorithm or subdivision scheme,
[23], [3, p- 202]. The error bound for such a method is of order
O(2m/22 1 H+™M)) with = min {v,, 1}, [3, Proposition 6.5.2],
and thus the performance of the computational algorithm based on
these approximations is comparable with ours (c¢f. (19) in Appendix),
but appears a bit worse in practice; see Fig. 2c). Noting further
that » is tantamount to the first order spline interpolation of ¢,
one can expect improvement for higher order interpolation schemes.
However, from Strang-Fix theorem (cf. e.g. eq. (9) in [25]) we get
that for continuous ¢ with a Sobolev exponent s > 1 and for
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Fig. 2. a) Bias error (thick line) and its components induced by approximation
(thin line) and interpolation error (dashed line); fixed H and growing K.
b) Interpolation errors evaluated at the grid 2~8 (thin line) and at arbitrary
points (thick line); M = 0. ¢) Interpolation errors of the estimate ﬁg (z)
with wavelet functions interpolated (thick line) and approximated by cascade
algorithm (thin line) d) An averaged (50 experiment runs) error of the
computational algorithm (thick line) and its components: bias (dashed line)
and variance (thin line), for the practical selection rule of K. The overall error
graph is “enveloped’ by the best and the worst performances of the estimate
during the experiment (thin dotted lines).

nth order interpolation, n = [vg — 1], the interpolation error order
is [l@m () — @2 (2) ||z = O2™/227") which means (cf.
(19) in Appendix) that the theoretical advantage in accuracy of the
higher-than-first order interpolations appears not before vg > 2 (i.e.
for Daubechies families with wavelet number p > 7; see e.g. [23, p.
1570]). The adequate counterpart of the rule (16) takes then the form
H = |(y+1)/n- K]. Simultaneously, for smoother wavelets (e.g.
for the third or of higher number) Daubechies wavelets families for
which v, > 1 [23, p. 1570]) the rule in (16) reduces to H = [vK|.
Thus, in order to maintain the best possible convergence rate of the
reference algorithm (7), the computational algorithms based on nth
order interpolations of (sufficiently smooth) wavelet functions require
approximately 7 times smaller interpolation scales H, however, at the
cost of increased computational burden (by nearly the same factor 7,
[25, p. 754)).

Note also that while selection of both scales K and H controls
the limit properties of the algorithm, setting the scale M remains
somehow arbitrary, since the rules in (6) and in (16) guarantee that
the algorithm converge with the reference rate (17) for any positive
M see (22). Nevertheless, if the estimate values are to be evaluated
only at the points of binary grid 27#, for some My, then by
setting the scale M so that M + H > My, one can remove the
second phase computing errors in (14) and enable the weakened rule
(18), ¢f: Remark 2.

We emphasize that the particular construction of the proposed
computational algorithm has mainly been driven by a possibility
of employing of the standard fast routines and the simplicity of
the prospective implementation (software or hardware). For instance,
the values of the select wavelet function at the required dyadic
grid can easily be calculated (and tabulated for further use), and
therefore, an implementation of our algorithm seems not to be
conceptually more intricate than a one involving e.g. trigonometric
functions and FFT. We finally note that in contrast to the alternative
approaches mentioned in the Introduction, the measurement data are
not preprocessed (e.g. binned, interpolated or sorted) and thus no
extra processing resources are needed.

APPENDIX — PROOF OF THE PROPOSITION

Supports of interpolators and interpolation errors bounds. From
the interpolation formulas in (8) one can immediately see that
supports of the interpolators are versions of the original wavelet
functions supports symmetrically shrunk by 2~ (HF+m+1) “hat is

. _ s14+n s24n
if SUpPP Pypp - [ ém ’ %m, ] then
_H s1+n 1 s2+4mn 1
supp ‘Pmn [ om + oH+m+1s om 2H+'m,+l]

A similar relation holds for ¢, and @fm These properties, in
particular, allow computational algorithms to maintain the general
formula of the original estimates in (1)-(3). Recalling that ¢ € C"¢
we have

|[€mn (@) = B (2)]
= ot fpnam - o (B )|
< 9% 2H+m2”%—2L}211:r"’"2"”z+1/2j n
for n = min{v,, 1}. Clearly |2H+’”2mx — L2H+m2mx +1/2]| <
1/2 and thus
|<,0mn - (x ’ = ( 2% 9" "(H"Lmﬂ))7 for anyz. (19)
T he same bound remains valid for the corresponding pair, 1),,,, and

zp . Note that the interpolation error decays with the growth of
both scales, H and m, simultaneously. In that sense an effective
. . _ N -H , . .
interpolation scale for ¢,,,’s (as well as for 1, ’s) is therefore
equal to H + m.

Bias error components. We can split the bias error of git (z) into
two terms

g9(z) — Egit (x)
= [g(x) - Ejx (x)] + [Egx (z) —
= bias §x (x) + bias g ()

2™ a—t1
anl//mn (ZZ) , and

DS

m=K n=[2Mz—t5]

[2Mz—s1]

Z amn[Par, (T) —

n=[2Mg—s5]

bias ght ()

bias i () =

Parn (2)]

bias gre ()

bias, gﬁ (z)
12Mz—sq |

+ X P (@) [oam — Eangy]
n=[2Mz—s5]

biasq gg (z)
[2™z—t1]

S B (@) — D7 ()]

M n=[2mz—t5]

+ 5

biasy, _cjg(:c)

K—-1 [2Mz—t1]

+ Y Y A (@) [Bn — EBin]

m=M n=[2Mz—t5]

1)135/3 9% H(z)

where QMn = <g0]\/fn ( ) 9 (.’I})) = E&Mn and /an =
(... (x),g(x)) = EB,, are appropriate coefficients of the
wavelet expansmn of g (z); cf. [7]; while Eatl,, = (@XL, (x), g (x))
and Eﬂmn = W’Zn (x), g (z)) are their computational counterparts;
cf [13]. For the former error term, bias g (), the bound O(277%)
was derived in [2], [7], [13]. To establish the bound for the latter,
bias g (x), we need the following lemma.



Lemma 3: The effective interpolation scale of interpolations,
@" (x) and {pffm (), in the computational coefficients, &’f,, and
B, calculated by the FWT algorithm is increased by two with each
algorithm step. Thus it holds that:

S
o 2 hat—2
= Z 141, 2n+1

Qmn (20
l=s1
—s1+1
-H n _H-2
an = Z (_1) h*l+1am+1,2n+l’
l=—s241

Proof: Recall that the FWT algorithm is based on scaling and
wavelet equations, cf. [2, p. 255]:

o () = V2 Y hipy, (20— 1) 1)
l=s1
—s1+1

o (7)) = V2 30 ()" b1, 22— 1).
l=—s241

Applying the first equation to the scaling functions interpolations
from (9) we obtain

oH+m.gmy /2
B (T le hi2% g ( %*%*O
e
QH =2+ m+1 gm1y g g
( L oH—2+m+1 J - (2n + l))
l=s1
E h’l(an»l 2n+1 ( )
l=s1
and hence
—_H 1 al —H
qmp = 73 Z Pmn (xk) Yk
N =
ED) 1 N g
= Zhlﬁzwm+ 2n+l( )yk
l=s1 k=1
S2

With the use of the wavelet equation in (21), the proof of the lemma
for coefficients an can be completed in a similar fashion. ]

Noting now that the initial coefficients for FWT, @i, , are com-
puted with the effective interpolation scale H + K yields

lanm — Ban,| = O (2‘¥2—"<H+M+1>—2"<K—M>)
B = BBl = 0 (27 2,

Putting together the bound in (19), the bounds above and the obvious
bounds given below (with the last one shown in e.g. [2], [7], [13]):

pin @) = o(2¥),
laam| = O(z‘%)
@] = o(*).
Bl = 0 (27(F0)).

and including that M < K, after some elementary algebra, we get
that (c¢f. (13)-(14))

o n(H+K+1)~2n(K — M))

(z) O (
biasg gx (xr) = O (2 "(H+K+l))
bias, g (z) = O (2 "(H+MH)) ,
biasy gre (£) = O (2 M= H+MH))

from which the aggregated bound of the interpolation error in (13)-
(14) is directly obtained. To get the variance error bound in (15),
it suffices to observe that sup, |@™ (z)| < sup, |¢ ()| for any
H, and apply the same arguments as for the corresponding variance
error bound in (5), see [7, Apps II and III]. Finally, the rule in (16)
is derived from the inequality 2 "+M+1D < 977K o from the
observation that if the order of the interpolation error part of the
overall bias error is equal or less than that of the approximation error
component, i.e. if bias i (x) < bias jx (), then bias jr (x) and
bias g (x) are of the same orders and (due to equality of variance
errors in (5) and (15)) the convergence rate of the reference algorithm
is conveyed without any loss to the computational counterpart. The
subsequent relation guarantees therefore the asymptotic rate in (17)
forany M =0,1,...

HZ%K—(M—FI) (22)
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