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Abstract: The paper deals with the problem of recovering a nonlinearity in a class of 
nonlinear dynamical systems of block-oriented structure.The class includes a large 
number of previously examined block-oriented models.The sought nonlinearity is 
allowed to have singular points like discontinuities and points of non-differentiability. 
In order to cope with such general nonlinearities the theory of wavelet expansions is 
applied. A major advantage of these expansions is adaptation to erratic behavior of 
the nonlinearity and local adaptation to the degree of smoothness of an unknown 
characteristic. Hence a wavelet-based identification algorithm of the nonlinearity 
is proposed and conditions for the convergence of the algorithm are given. For 
nonlinearities satisfying some smoothing conditions the rate of convergence is also 
evaluated. 
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1. INTRODUCTION 

A large class of physical systems is nonlinear or re- 
veal nonlinear behavior if they are considered over 
a broad operating range. Hence the commonly 
used linearity assumption can be regarded only 
as a first-order approximation to the observed 
process. System identification is the fundamental 
problem of complete determination of a system 
description from an analysis of its input and out- 
put data. A large class of techniques exist for 
identification of linear models. Much less attention 
has been paid to nonlinear system identification, 
mostly because their analysis is generally harder 
and because the range of nonlinear model struc- 
tures and behaviors is much broader than the 
range of linear model structures and behaviors. 
There is no universal approach to identification 
of nonlinear systems, and existing solutions de- 

pend strongly on a prior knowledge of the system 
structure, see (Bendat, 1990), (Billings, 1980), 
(Chen, 1995), (Hunter and Korenberg, 1986) for 
some classical techniques for nonlinear system 
identification. A promising strategy for nonlinear 
system identification is based on the assumption 
that the system structure is known. This yields 
the concept of block-oriented models, i.e., models 
consisting of linear dynamic subsystems and static 
nonlinear elements connected together in a certain 
composite structure. Signals interconnecting the 
subsystems are not accessible for measurements 
making the identification problem not reducible 
to the standard situations, i.e., identification of 
linear dynamic systems and recovering memo- 
ryless nonlinearities separately. Such composite 
models have found numerous applications in such 
diverse areas as biology, communication systems, 
chemical engineering, psychology and sociology 



(Bendat, 1990), (Billings, 1980), (Chen, 1995), 
(Hunter and Korenberg, 1986). A class of cas- 
cade/parallel models, i.e., when linear dynamic 
subsystems are in a tandem/parallel connection 
with a static element is a popular type of block- 
oriented structures. Examples of such models in- 
clude cascade Hammerstein, Wiener and sandwich 
structures and their parallel counterparts. Tradi- 
tionally it has been assumed that the nonlinearity 
in such models can be parameterize, e.g., it can 
be a polynomial of a finite and known order. 
The parametric restriction is often too rigid yield- 
ing incorrect conclusions about the system struc- 
ture. A non-parametric identification algorithm 
for reconstruction of nonlinearities in a cascade 
block-oriented model has been first proposed in 
(Greblicki and Pawlak, 1986). We also refer to 
(Greblicki, 1994), (Greblicki and Pawlak, 1994), 
(Pawlak and Hasiewicz, 1998) for detailed discus- 
sion of nonparametric approaches to identifica- 
tion of the cascade/parallel block-oriented models. 
The aim of nonparametric methods is to relax 
assumptions on the form of an underlying non- 
linear characteristic, and to let the training data 
decide which characteristic fits them best. These 
approaches are powerful in exploring fine details 
in the nonlinear characteristics (Hhrdle, 1990), 
(Juditsky et al., 1995), (Sjoberg et al., 1995). 

In this paper we consider the nonparametric ap- 
proach to the identification of a broad class of non- 
linear composite models which includes most pre- 
viously defined connections. We are mostly inter- 
ested in recovering the system nonlinearity which 
is embedded in a block oriented structure contain- 
ing dynamic linear subsystems and other "nui- 
sance" nonlinearities. Our approach is based on 
regression analysis and we propose the identifica- 
tion algorithms originating from the area of non- 
parametric regression techniques (HgLrdle, 1990). 
The identification algorithm is convergent for a 
large class of nonlinear characteristics and under 
very mild conditions on the model dynamics. The 
proposed estimates are based on the theory of 
orthogonal bases originating from wavelet approx- 
imations of square integrable functions. This the- 
ory provides elegant techniques for representing 
the levels of details of the approximated function 
(Daubechies, 1992), (Mallat, 1998), (Vetterli and 
Kovacevic, 1995), (Walter, 1994). The wavelet 
theory has found recently applications in a re- 
markable diversity of disciplines. A little atten- 
tion, however, has been paid to the application 
of the wavelet methodology to control theory 
and system identification in particular(Juditsky et 
al., 1995), (Pawlak and Hasiewicz, 1998), (Sjoberg 
et al., 1995), (Sureshbabu and Farrell, 1999). 

In this paper we apply the wavelet analysis to 
the identification of the proposed nonlinear com- 
posite systems. In particular a class of wavelet 

orthogonal expansions with scaling and wavelet 
functions of compact support is taken into con- 
siderations. We give conditions for the identifica- 
tion algorithms to be pointwise convergent and 
find its optimal rate of convergence. As a result 
of these studies the optimal local choice of the 
resolution level is calculated. This optimal value 
depends on some unknown characteristics of the 
system and therefore the problem of estimating 
the resolution level from data is also addressed. It 
is worth mentioning that we are dealing with the 
dependent and non-Gaussian observations as the 
data are generated from non-linear and dynamical 
systems. For the sake of further developments let 
us give a brief overview of multiresolution and 
wavelet decompositions, see (Daubechies, 1992), 
(Mailat, 1998), (Vetterli and Kovacevic, 1995), 
(Walter, 1994) for the detailed treatment of this 
subject. Let Z denote the set of all integers in R. 
The multiresolution representation of a function 
f from L2(R) at the resolution m is given by 

f ro(x)  = (1.1) 
kEZ 

where e~mk = f_~ f (X)~mk(x )dx  is the kth 
Fourier coefficient, ~mk(X) = 2m/2~( 2 m x -  k) and 
~(x) is the so-called father wavelet function. This 
function is such that {~(x - k),k E Z} is or- 
thonormal system in L2(R) and (~mk(X), k e Z}, 
m = 0 ,±1 , . . .  generates a sequence of nested 
spaces {Vm,m C Z} in L2(R) which union is 
dense in L2(R). A number of practical father 
wavelet functions with various properties have 
been proposed in the literature, culminating in the 
seminal work of Daubechies (Daubechies, 1992) 
on compactly supported father wavelet functions. 
It should be noted that for such functions the 
infinite sum in (1.1) contains only a finite number 
of terms. Hence for compactly supported scaling 
functions the multiscale basis {~mk(X)} consists 
of functions which are non-zero in a finite inter- 
val and as m increases the support of ~mk(x) 
shrinks, i.e., ~mk(X) becomes taller and thinner. 
The wavelet analysis characterizes the detail infor- 
mation hidden between two consecutive resolution 
levels. This is quantitatively described by the fact 
that there exists a mother function ¢(x) such that 
{ 2 m / 2 ¢ ( 2 m X  -- k) ,  k E Z }  forms an orthonormal 
basis in the orthogonal complement of Vm+] in 
Vm. The mother wavelet function ¢(x) can be 
derived from a given scaling function ~(x). As a 
result any f e L2(R) can be approximated at the 
resolution level m0 + r + 1 as follows 

= 

kEZ 
mo+r 

s ~ m o  kEZ 
(1.2) 



The first term in (1.2) represents our initial guess 
about f (x) ,  whereas the second one adds further 
layers of information about f (x) .  It is common 
to call the {bsk} as the detail coefficients. On 
the other hand they are Fourier coefficients cor- 
responding to ~Psk(x). 

It is easy to show that  both fro(x) in (1.1) and 
fmo+r+l(X) in (1.2) tend to f (x)  in the L2(R) 
norm as m ~ oc and r --~ oc, respectively. The 
pointwise convergence of fm (x) and fmo+r+l (x) is 
less trivial (Daubechies, 1992), (Mallat, 1998). 

A popular choice of scaling and wavelet functions 
is the one corresponding to the Haar system. 
Here ~(x) = l[0,1)(x) and ~b(x) = 1[0,1/2) (x) - 
l[a/2d)(x), where 1A(X) denotes the indicator 
function of A. Hence the resolution level m con- 
tains all functions being constant on all intervals 
{[k2 -m, (k + 1)2-rn), k e Z}. Smooth sealing and 
wavelet functions with compact support have been 
proposed by Daubechies (Daubechies, 1992).A 
popular class of non-compact supported wavelets 
is the Meyer-type wavelets. This type of wavelets 
belongs to the class of band-limited wavelets, i.e., 
the Fourier transform of ~;(x), ~b(x) is compactly 
supported. 

2. THE NONLINEAR BLOCK-ORIENTED 
MODEL 

Let us now introduce a class of nonlinear block- 
oriented models examined in this paper. The class 
is characterized by the general property that  the 
nonlinear characteristic of our interest can be 
isolated from the rest of the system. Moreover 
the model under s tudy is discrete time and time- 
invariant. 

Hence our general nonlinear model is of the fol- 
lowing input-output form 

On = p(Xn) +~n 
P 

~n E s j A j ( X n - j )  , (2.1) 
j = l  

Yn On + en 

where (Xn, Yn) is the (input, output)  pair, p(x) 
represents the unknown system nonlinearity to 
be recovered, {~n} is the "system noise" pro- 
cess characterizing the history of the system and 
{¢n} is the measurement noise. The system noise 
process ~n is a measurable transformation of 
{ X n - l , X n - 2 , . . . , X n - p }  , where p, 1 < p < ec 
is the memory length. It is worth noting that  p 
need not be known. Hence ~n has the following 
nonlinear moving average representation 

P 

= Z (2.2) 
j = l  

The following assumptions concerning the model 
in (2.1) are used in the paper: 

A s s u m p t i o n  1 : The inputs {X1 ,X2 , . . . }  form 
a sequence of independent and identically dis- 
tributed random variables which are independent 
of {~n}. The probability density f of {X~, X2, . . . }  
exists but is unknown and satisfies the following 
restrictions: 

O 0  

f2(x)dx < (A1.1) <X), 

- - O O  

and 

0 < ~ _< f (x)  (A1.2) 

for all x E R and some unknown 7- 

A s s u m p t i o n  2 : For the system noise process 
{~n} let {Aj(x)} be a sequence of measurable 
functions such that  

EAj(X)  = 0 ,  j = 1 ,2 , . . .  (A2.1) 

A s s u m p t i o n  3 : The nonlinear characteristic 
#(x) is a measurable function satisfying the fol- 
lowing conditions: 

J 
w O O  

E#2(X) < o¢, (A3.1) 

(p(x)f(x))2dx < oc, (A3.2) 

A s s u m p t i o n  4 : The measurement noise {en} is 
uncorrelated and such that:  

E cn = O, var En = 0 .2 < o0. 

Let us elaborate on the role of the above condi- 
tions. Restriction (A1.1) is required since we use 
the L2(R) multiscale decomposition of f (x) .  Con- 
dition (A1.2) says that  we consider the estimation 
problem in such points on R where the input 
density is high, i.e., where f (x)  is strictly bounded 
away from zero. Assumption (A2.1) implies that  
{~n} is the second order covariance stationary 
stochastic process with E~n = 0, var~n < c<~ and 
cov( n, P = Ej=i sjsj+rE{ ,j(Zp, j+r(X)}, 
Irl > 1. This along with Assumption (A3.1) and 
Assumption 4 makes the output  process {Yn} well 
defined, i.e., it is also a second order covariance 
stationary stochastic process. Note that  if (A2.1) 
is not met then an additional bias term in estimat- 
ing #(x) is present. The only condition concerning 
#(x) required in this paper is (A3.2). This condi- 
tion is related to our identification procedure for 
recovering p(x) using the wavelets decomposition 
in L~(R). 



There is a large class of block-oriented nonlinear 
systems which fall into the description given in 
(2.1) and (2.2). For instance the following system 
with two nonlinearities and one dynamical sub- 
system meets our requirements. 

On = E hJ(O(Xn-j) + O°(Xn-j-1))  
j=0 

Yn = On + en 

Here 0(x) is the nonlinearity to be estimated and 
O0(x) is a "nuisance" nonlinearity (known or not). 
For 00(x) -= 0 we recover the so called Ham- 
merstein model being extensively studied in the 
system identification literature (Bendat, 1990), 
(Billings, 1980), (Chen, 1995), (Greblicki and 
Pawlak, 1986), (Greblicki and Pawlak, 1994), 
(Hunter and Korenberg, 1986). 

It can be easily verified that  the above system 
is of the form (2.1), (2.2) with #(x) = O(x) + 
EOo(X) + E(O(X) + Oo(X)) P ~ ] = l h J  and ~n = 
(Oo(Xn-1) - EOo(Xn-1))  + EaP.=i h j % _ j ,  where 
7j = O ( X j - i ) + O o ( X j - 1 ) - E ( O ( X j - J + O o ( X j - 1 )  ). 
Assumption 3 holds if EO2(X) < oo, EO~(X) < 
oo. Note also that  if O(0) = 0 then O(x) = It(x) - 
p(0) for all x. Hence the estimation of p(x)  is 
equivalent to estimation of O(x). 

The key observation for designing our identifica- 
tion algorithms is that  

E{Yn[Xn = x} = p(x) ,  (2.3) 

i.e., that  the system nonlinearity to be identified 
is equal to the standard regression function of the 
system output  Yn on the system input Xn.  Thus 
by estimating the regression in (2.3) we recover 
the non-linearity #(x). 

The problem of estimation of the regression 
function from the input-output training data 
{(Xt,Y,)} when {(Xt,Yt)} is a sequence of in- 
dependent and identically distributed (lid) ran- 
dom variables has been extensively studied in the 
statistical literature (Antoniadis and Oppenheim, 
1995), (H~rdle, 1990). In this paper it is assumed 
that  the system is excited by the lid signal {X t }  
(Assumption 2), whereas {Yt} being an output  of 
a nonlinear time-invariant dynamic system is a 
dependent stat ionary stochastic process which is 
in contrast to the papers cited above. Furthermore 
let us note that  {Yn} is neither strictly stationary 
process nor mixing. The latter condition has been 
commonly used in publications on nonparametric 
estimation from dependent data  (H~dle,  1990). 

3. IDENTIFICATION ALGORITHMS 

Due to the fundamental property established in 
(2.3) we can treat #(x) as a standard regression 

function of Yn on Xn = x. In order to construct 
an estimate of the regression function let us first 
observe that  

= 9(x) 
/ ( x ) '  

where g(x) = # ( x ) f ( x )  for every x where the as- 
sumption (A1.2) holds. Owing to the assumptions 
(AI.1), (A3.2) and using the results of Section 1 
we can approximate 9(x) and f ( x )  at the resolu- 
tion m as follows: 

gin(x) = E amk~mk(X)'  
kEZ 

kEZ 

(3.1) 

where one can easily observe that  

and 

amk = f # (X)~mk(X) f ( x )dx  

= E{Yn~omk(Xn)} 

o o  

Cmk = / ~Orak(x)f(x)dx = E{~ymk(Xn)}. 

--00 

Empirical counterparts of gin(x) and fro(x) in 
(3.1) can be easily constructed by replacing the 
expected values in the formulas for amk and Cmk 
by their natural estimates 

n 

a m k  = n - 1  

i = 1  
n 

: Z 
i=I 

(3.2) 

All these considerations yield the following initial 
estimate of #(x) at the resolution m 

amk mk(X) 

 m(X) = 
E  mk mk(X) 
kEZ 

(3.3) 

It is worth noting that  Ctrak, Cmk are unbiased 
estimators of amk, Cmk, i.e., Eamk = amk, Eemk = 
Crnk. Let us note that  for compact supported 
father wavelet functions ~(x) there is a finite 
number of terms in the sums in (3.3). If ~(x) is 
not compact supported one has to truncate the 
sums in (3.3) to some finite limits. 

A wavelet-based estimate of p(x)  can be proposed 
based on the representation in (1.2). Proceeding 
as in (3.1) and (3.2) we can define the following 
estimate 



(E mo+  ) 
X k c Z  s = m o  k E Z  

rno+r ) 
+ , (3.4) 

s = m o  k E Z  

where Crook, Crook are defined as in (3.2) and 

n 

~=1~ (3.5) 
clsk = n - 1 E ~ P s k ( X i )  

i = l  

are estimates of the Fourier coefficients corre- 
sponding to the wavelet function. 

The estimate in (3.4) has an advantage of being 
able to incorporate the a prior knowledge about  

4. CONVERGENCE ANALYSIS 

The parameters m in (3.3) and r in (3.4) play 
important  role in both asymptot ic  and finite sam- 
ple size performance of the estimators. For the 
convergence property, i.e., that  ~(x) ~ p(x) as 
n --~ oz in probability for almost all x C R it 
can be shown that  the resolution level r must be 
chosen as a function of the sample size n, i.e., 
r = r(n) in such a way that  r(n) --~ c~ and 
2r(n) / n  ~ 0 as n --, cx~. In order to establish 
the rate of convergence we need some smooth 
conditions on tt(x)and f ( x ) .  Hence let 

#(x) and f ( x )  possess s derivatives (4.1) 

We also need some conditions on the father 
wavelet function ~(x) .Let  g ( x , y )  = ~ j  ~ ( x -  
j )~ (y  - j) .  The following conditions on K(x ,  y) 
are required. 

For an integer S > 0 we have 

[ K ( x , y )  ]_< F ( x  - y) (4.2) 

with f Ix [s+l F (x )dx  < ~ and 

(y z ) t K ( z , y ) d y  = 0 (4.3) 

for l = 1 , 2 , . . . , S .  

Theorem 1. Let Assumptions 1-4 be satisfied. Let 
#(x) and f ( x )  satisfy (4.1). Let  the father wavelet 
~(x) be compact supported and satisfy (4.2) and 
(4.3) with F C L2(R). Let S be such that  s _< S +  
1. 

If the resolution level r(n) is selected as r(n) 
log2(n)/(2s + 1) then 

E(li(x) - #(x) )2 = 0 (n-2s/(2s+') I . 
\ /  

Theorem 1 gives the conditions for the mean 
squared error convergence of the identification al- 
gorithm. It is of considerable interest to establish 
conditions for the strong convergence, i.e., the 
convergence for which ~(x) converges to #(x) with 
probability one. 

It can be shown that  if r(n) ~ log22(n)/(2s + 1) 
then 

~(x) = p(x) + 0 (n-S/(2s+l)log(n)) 
\ 2  

with probability one. 

Theorem 1 holds for a class of compactly sup- 
ported wavelet systems satisfying conditions (4.2), 
(4.3). As an example of non compact supported 
wavelets one can use a Coifman wavelet system 
(Mallat, 1998) of degree S. Hence if the following 
moment conditions are met 

/ xl~(x)  dx 0 for I = i , . . . , S  

and 

f x t¢ (x )  dx = 0 for 1=0,. . .  ,S. 

Under these conditions the rate of convergence as 
in Theorem 1 can be obtained provided that  (4.1) 
holds with s = S. Let us finally note that  the 
popular Haar wavelet system satisfies (4.2), (4.3) 
with S = 1. Hence in this case the rate obtained in 
Theorem 1 is of order O(n -2/3) with r(n) selected 
as log2(n)/3 . 

The identification algorithm in (3.3) and (3.4) 
is in the form of the ratio of orthogonal series 
expansions. In (Greblicki and Pawlak, 1994) es- 
t imates based on classical orthogonal polynomials 
have been studied for a particular class of block- 
oriented models. In particular, it has been proved 
that  the convergence holds if p(x) is differentiable 
at x which is consistent with the well known fact 
that  there are examples of continuous functions 
whose orthogonal series diverge. On the contrary 
the wavelet expansions converge for continuous 
functions and consequently they can be applied 
to a broader class of nonlinear characteristics. 
Nevertheless, the estimates (3.3) and (3.4) are 
not adaptive in the sense that  they cannot reach 
an optimal rate of convergence for a large class 
of nonlinear characteristics (Antoniadis and Op- 
penheim, 1995). From practical point of view one 
would like to exclude those terms in the series in 
(3.4) which cannot be accurately estimated due 



to the existing distortions, i.e., the system noise 
~n, the measurement noise en and the sparsity 
of the input signal {Xn}. Considerations of this 
nature suggest the following modification of ~(x) 
using the concept of thresholding (Antoniadis and 
Oppenheim, 1995), (Mallat, 1998) 

rao+r ) 
+ Z E s=rno kE Z 

mo+r ) 
+ E E , s=mo kEZ 

where tsk(X) is a threshold function such that 
tsk(x) = 0 for [x I < ~'sk and Tsk is a threshold 
constant. For instance tsk(x) = xl{ixl_>r~}(x) and 
t k(x) = ma. (x- T k,0)sign(x) are two popular 
choices often referred to as soft and hard thresh- 
olding, respectively. The choice of thresholds Tsk 
has been suggested as CV/]~Un~, cX/(s - mo) /n  
or cX/s]~ for all (s, k), where c > 0 is suitable 
chosen constant. It is worth noting that these 
propositions have been derived for the case of in- 
dependent data and they may be far to be optimal 
in our case. Yet another alternative is to keep (or 
delete) a whole resolution level of detail coeffi- 
cients in (3.4). Hence ~mo+r • --,~=mo ~ k ~ Z  bskCsk(X) in 
(3.4) is replaced by Esm__°m+orts(Ekezbsk¢~k(X)), 
where ts(X) is some threshold type function. 

Finally let us suggest a further extension of our 
identification algorithms based on the concept of 
multiple wavelets (Geronimo et al., 1994) by intro- 
ducing several scaling and wavelet functions. This 
approach offers further improvements in the accu- 
racy of wavelet based estimation algorithms, i.e., 
one can estimate nonlinear characteristics with 
highly variable smoothness, e.g., with multiple 
discontinuities and other singular points. 
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