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ABSTRACT

The paper deals with the problem of reconstruction of nonlineari-
ties in a certain class of nonlinear dynamical systems of the multi-
channel form. A prior information about the system is very limited
excluding the standard parametric approach to the problem. The
system structure consists of nonlinearities being embedded in a
block oriented structure containing dynamic linear subsystems and
other “nuisance” nonlinearities. The multiresolution idea, being
the fundamental concept of the modern wavelet theory, is adopted
and multiscale expansions associated with a large class of scal-
ing functions are applied to construct nonparametric identification
techniques of the nonlinearities. The pointwise convergence prop-
erties of the proposed identification algorithms are established.
Conditions for the convergence are given; and for nonlinearities
satisfying a local Lipschitz condition, the rate of convergence is
evaluated.

1. INTRODUCTION

A large class of physical systems are nonlinear or reveal nonlin-
ear behavior if they are considered over a broad operating range.
Hence the commonly used linearity assumption can be regarded
only as a first-order approximation to the observed process. Sys-
tem identification is the problem of complete determination of a
system description from its input and output data. A large class
of techniques exist for identification of linear models. Much less
attention has been paid to nonlinear system identification, mostly
because their analysis is generally harder and because the range of
nonlinear model structures and behaviors is much broader than the
range of linear model structures and behaviors. There is no uni-
versal approach to identification of nonlinear systems, and exist-
ing solutions depend strongly on a prior knowledge of the system
structure [1, 2]. A promising approach is based on the concept of
block-oriented models, i.e., models consisting of linear dynamic
subsystems and static nonlinear elements connected together in a
certain composite structure. Such composite models have found
numerous applications in such distant areas as biology, communi-
cation systems, chemical engineering, psychology and sociology
[1, 3, 2]. A class of cascade/parallel models is a particularly popu-
lar type of block-oriented structures. Examples of such models in-
clude cascade Hammerstein, Wiener and sandwich structures and
their parallel counterparts, [4, 1, 5, 6, 7]. These models become
especially attractive if one allows a general class of nonlinear char-
acteristics not being able to be parametrized and smooth, e.g., not
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being just a polynomial of a finite order. We refer to [4, 1, 2, 7] for
parametric identification techniques of the cascade/parallel block-
oriented models with polynomial nonlinearities. The parametric
restriction is, however, often too rigid. In [5, 6, 8, 9, 10, 11] the
nonparametric approach to identification of the cascade/parallel
block-oriented models has been proposed. The aim of nonpara-
metric methods is to relax assumptions on the form of an under-
lying nonlinear characteristic, and to let the training data decide
which characteristic fits them best.

In this paper we extend the nonparametric identification ap-
proach to the case of multi-channel nonlinear, block-oriented mod-
els. This kind of models appear in areas as diverse as multisensor
systems, data fusion, multiuser detection, and biological systems
with multiple excitations [3, 12, 13]. Surprisingly there has been
a little effort made in identifying multi-channel nonlinear systems.
In fact most of the theoretical developments of nonlinear identifi-
cation to date have dealt with single-channel systems. In this paper
we are interested in recovering the system nonlinearities in each
channel which are embedded in a block oriented structure contain- .
ing dynamic linear subsystems and other “nuisance” nonlineari-
ties. Our approach to function recovering is based on regression
analysis and we propose the identification algorithms originating
from the area of nonparametric regression [14]. The proposed es-
timate is based on the theory of orthogonal bases originating from
multiscale and wavelet approximations. This theory provides ele-
gant techniques for representing the levels of details of the approx-
imated function. Multiresolution and wavelet theory has found re-
cently applications in a remarkable diversity of disciplines [15].
A little attention, however, has been paid to the application of the
multiresolution and wavelet methodology to system theory and to
nonlinear system identification in particular, see [16, 10, 11, 17]
for some preliminary studies into this direction. For the proposed
identification algorithms we show that they converge for a large
class of nonlinear characteristics and under very mild conditions
on the model dynamics. The rigorous convergence properties are
established and the best possible pointwise rate of convergence is
found.

2. MULTI-CHANNEL NONLINEAR SYSTEMS

Let us now introduce a class of nonlinear multi-channel dynamical
systems examined in this paper. A system of this class is character-
ized by the general property that memoryless nonlinear character-
istics are separated from the dynamical part the system. Although
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Fig. 1. Two-channel nonlinear dynamic system

the system structure is known we assume no prior model of the
system characteristics, i.e., we are interested in a nonparametric
approach to system identification. Throughout the paper we ex-
amine, without much loss of generality, the two-channel nonlinear
model (depicted in Fig. 1) of the following form

Ol,n = m (Un) + gn
02,n = M2 (Vn) + 7 y 2.1)
Yo = Ol,n + 02,'» +én

where (Un, Va; Yy, are (input; output) signals, pq (u), p2(v) rep-
resent the unknown system nonlinearities in the each channel, {¢.},
{nn} are the “system noise” processes characterizing the history
of the system, and {e,} is the measurement noise. It is assumed
that the blocks T3, T in Fig. 1, representing the system noise pro-
cesses &n, Nn, are measurable transformations of past inputs and
are given by

P q9
bn = Es:,jz\x,j(Un-j),nn = Zsz,a‘)\z,i(Vn—j) 22

i=1 j=1

Here {A1,;(u)}, {)2,;(v)} are some nonlinearities and {s1,;},
{s2,;} are some weight factors. All these quantities are assumed
to be unknown. It should be noted that the memory length for &,, is
p whereas for 7, is g. The memory lengths p, g are unknown and
take values between zero and infinity. A large number of different
nonlinear systems can be obtained by choosing various combina-
tions of the aforementioned parameters. For instance p = q = 0
yields Y, = p1(Un) + p2(Va) + €n. This is an additive model,
a well studied structure in the area of non-parametric multiple re-
gression modeling and estimation [18, 19, 20].

Our principal goal in this paper is to recover the non-linear
characteristics p21(u), g2 (v) in (2.1) from the input-output training
data {(Uly ‘,l; )/l)a [ERE) (Una Vﬂ; Y'I)}

The following assumptions concerning the model in (2.1) are
required in the paper.

Assumption 1 The inputs {(U1, V1), (U2, V2),...} forma
sequence of independent and identically distributed random vari-
ables which are independent of {€n}. The joint probability density
Juv of (U, V) exists and moreover fyv € La(R?). We also as-
sume that fuv is strictly bounded away from zero and infinity.

Assumption 2 For the system noise processes {€n }, {nn} we have
EX,;(U) =0, EX2,i(V) = 0with EA] ;(U) < o0, EX3 i(V) <
oo, forj=1,2,...,pandi=1,2,...,q

Assumption 3 The nonlinear characteristics p1, pa satisfy
Eu3(U) < oo and Epd(V) < oo.

Assumption 4 The measurement noise {en} is uncorrelated and
such that Eey, = 0, var e, < 00.

Let us elaborate on the role of the above conditions. Assump-
tion 1 is required since we use the L(R?) multiscale decompo-
sition of fyy. The boundness of fyy away from zero is neces-
sary since we can only consider the estimation problem in such
points where the input density is sufficiently high. Assumption 2
is necessary for {£,} to be the second order covariance stationary
stochastic process with E€,, = 0, var £, < oco. The condition
on {7, } can be interpreted analogously. This along with Assump-
tions 3, 4 make the output process {Y,,} well defined, i.c., it is a
second order covariance stationary stochastic process.

There is a large class of nonlinear multi-channel models which
fall in the description given by (2.1). This includes multi-channel
Hammerstein models consisting of nonlinear static elements fol-
lowed by linear dynamic systems, a multi-channel parallel system
where each channel is of the form of the parallel connection of a
memoryless nonlinear element and a linear dynamic system, and
multi-channel systems being combinations of the aforementioned
connections.

3. IDENTIFICATION ALGORITHMS AND THEIR
ACCURACY

Our reconstruction methods relay on the theory of the nonpara-
metric regression aiming to find a relationship between the input
and output variables of the system [14]. The regression function of
Yy, on (Un, V4.), being the orthogonal projection of Y5, on the sub-
space spanned by (Un, V), is given by m(u, v) = E{Y,|U, =
4, Vo = v}. By Assumptions 1, 2, and 4 we obtain that m(u, v) =
#1(u)+p2(v). Hence one cannot recover the nonlinearities x1 (u),
p2(v) from the regression function m(u, v). Furthermore, using
one dimensional regression functions mi1(u) = E{Ys|Un = u},
ma(v) = E{Ya|V, = v} we get m1(u) = pa(u) + E{pa(Va)|
Un = u} and ma(v) = p2(v) + E{u1(Un)|Va = v}. Once
again the recovery is impossible unless the inputs U, and V;, are
statistically independent, not very realistic assumption in practice.
To overcome these difficulties one can use the method of marginal
integration introduced originally in [19] for the case of memory-
less models. The underlying idea of the integration method is to
estimate 1 (u), p2(v) by integrating a suitable pilot estimate of
m(u, v) with respect to a specific density function. In particular
by using the marginal densities fu, fv of fuv in the integration
process we obtain the following fundamental identities

M (u) = /-00 m(u,v)fv (v)dv = p1(u) + c2 3.1

—00

and

Ma(v) = / " (o) folwdu = paw) + e, (32)

-0
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where ¢; = Euy(U) and ca = Eua(V). Therefore the nonlin-
earities p1(u), p2(v) are identifiable from M (u) and Ma(v) up
to the additive constants ¢y, ca. It is worth mentioning that under
some mild conditions we have ¢; = ¢z = 0. This can happen if,
e.g., fu(u) and fv (v) are even whereas 1 (u) and p2(v) are odd.
Formulas (3.1), (3.2) suggest a simple estimation strategy, i.e., first
estimate m(u, v) by (u, v) and then identify p1 (u), p2(v) from

n? i miu, V)

S ) (33)

n? Zrﬁ(U,,v)

Here and through the paper we assume that ¢c; = ¢z = 0. Note
that we replaced the integration by an empirical average. Thus
(3.3) provides a generic estimation scheme for estimating p1(u),
ua(v). In this paper we utilize the multiresolution representations
to form a pilot estimate mg ,v) of m(u, v). Hence let ®(u,v) be
a scaling function in Lo (R®) w1th the associated wavelet functions
{¥*(u,v),\ = 1,2, 3 such that the so-called multiresolution
decomposition of Lz( ) takes place [15). It can be shown that
in this case {® i (u,v),J € Z,k € Z2} as well as {¥ jx(u,v),
J € Z,k € Z%,) = 1,2, 3} form orthonormal bases for L2(R?),
where

fa(u) =

p2(v) =

By (u,v) 2°8(27u — k1,27v ~ ka2),

U (u,v) 270227 — k1,27 - k2).
Let f(u,v) be the orthogonal projection of f € La(R?) onto the
J-th resolution subspace, i.e.,

Fr(u,v) = Z asx®sx(u,v),

kez?

1l

where azx = (f, ®sx) is the Fourier coefficient. Returning to
our estimation problem let us first project the functions g(u,v) =
m(u,v)fuv(u,v) and fyuv(u,v) onto the J-th resolution sub-
space. Then expressing the Fourier coefficients of g(u, v), fuv (u,v)
in terms of expected values [11] we can easily derive the following
estimate of m(u, v)

g7 (u’ U) 3.4
my(u,v) = —fuv, (w,0) (34
where
_l’j_]('ll., U) = Z a-’.ké-’;k(usv)y
kez2
iUV,J(uy v) = Z &g x®sx(u,v)
ke22

are the estimates of g(u, v), fuv (u, v), respectively. Here s x =
n? Z::; Yi@5u(Ui, Vi), Qe = "_1,22;1 ®;5x(Us, Vi) are
the empirical Fourier coefficients. Combining (3.3) and (3.4) we
can define the following estimates of the nonlinear characteristics
of the two-channel system

fa@) = a7t (V)
ot (3.5
pas(v) = n7'Y im(Usv)

a=1

It is common to determine ®(u,v) and {¥*(u,v),A = 1,2,3}
from the univariate multiresolution analysis. Thus let ¢ and ¢ be
one-dimensional scaling and wavelet functions yielding the mulires-
olution decomposition of Lz (R). Then one can define ®(u,v) =

Bu)6() and ¥i(u,0) = PWI), (o) = HWH)

W3 (u, v) = (u)y(v). Such a class of scaling and wavelet func-

tions is assumed in the paper. Moreover we assume [21] the fol-
lowing.

Assumption 5 The scaling and wavelet functions ¢(u), Y(u) are
radzally bounded by decreasing functions decaying like O((1 +
ju])"P), D> 1.

A number of practical scaling and wavelet functions satisfy
Assumption 5. For instance the Lemarie and Meyer scaling [15]
function satisfies Assumption 5 with D > 2. The spline wavelet
analysis corresponds to scaling functions with the exponential ra-
dial bounds. Assumption 5 is trivially satisfied by the Daubechie
class of compactly supported scaling/wavelet functions.

The accuracy of our estimates depends on the smoothness of
p1(u), pa(v) as well as fu(u), fv(v). In this paper we use the
local Lipschitz condition. Hence let Lip(c; zo) denote the collec-
tion of functions f € L2(R) such that |f(zo + 6) — f(zo)| <
Ly|d}*, where 0 < a < 1, Ly is some positive constant and 4,
|6] < 1, determines the size of a small neighborhood around zo.
If f € Lip(a; zo) one can say that f has a fractional derivative of
order o« at zo. Note if f € Lip(a; zo) then f need not be contin-
uous on R. The following theorem gives the rate of convergence
for fi15(u), fi2s(v) in the mean squared error sense.

Theorem 1 Let Assumptions 1-4 be satisfied. Let Assumption 5
holdwith D > 1. Assume that p, € Lip(aa,ue), fu € Lip(B1,uo)
and pz € Lip(az,w), fv € Lip(Ba, vo). Then selecting

Ji = h+D-1
T a@D-1)+D-1

log,(n)
we have

E(f1s, (u0) — p1(uo))* = O (n'll—’%“(g“‘l’) ‘) )

and selecting

62+D-1
62(2D—1)+D—1

J2 = log, (n)

we have

E(ft25,(vo) — M2(’Uo))2 =0 (nh—(‘%z—%,-l-‘ll)—)-l) ,

where §1 = min(au, $1), 02 = min(az, £2).

Remark 1 Let us observe that for compactly supported scaling
26

Junctions the above rates become O(n ﬁ) (nﬂ_*zf) This
is the optimal rate of convergence since it agrees with the best
possible rate attained by any linear nonparametric regression es-
timation [20]. In particular, if a; = Bi = 1, 1 = 1,2 then the
rate is of order O(n=2/3), where the resolution level J must be
selected as J = 371 log,(n).
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Remark 2 We have applied the same scaling/wavelet functions to

form the pilot estimate 1y used for defining fi1y, fizs. Gener-
ally the nonlinear characteristics p1, p2 can have much differ-
ent smoothness and a different pilot estimate is needed for each
estimated nonlinearity. This can be achieved by selecting scal-
ing/wavelet functions of different forms and orders (quantified by
a number of vanishing moments).

Remark 3 The detail analysis reveals that the estimates i1, fi2g
are negatively biased. This is due to the fact that in (3.5) one uses
the same data for learning and empirical averaging. The reduced
bias estimate can be obtained if we apply the leave-one-out strat-
egy. Thus the estimate [i15 takes the following form fi1j(u) =
YT ™a,—i(u, Vi), where mivg,—i(u, v) is the estimate

g (u, v) with the observation (U;, V;; Ys) deleted.

Thus far we have examined the two-channel nonlinear system.
The extension to M-channel case is straightforward and the re-
sult of Theorem 1 still holds. Nevertheless, there is a change in
the asymptotic constants which may depend on M. This seems
yields some degradation in the performance of the integrated es-
timates. Therefore for very large M one would like to eliminate
some “weak” channels. This can be done by forming some mea-
sure of strength for u,, $ = 1,..., M using the estimates like in
(3.3). This interesting problem is beyond the scope of this paper.
Further improvement in the accuracy of our estimates might be
expected if nonlinear multiscale approximations (employing some
kind of wavelet thresholding rules) are applied [15, 22]. This has
been extremely successful strategy for signal and image denoising.
Nevertheless in this paper we consider dynamical systems, i.e.,
we deal with dependent data, and it is not clear whether wavelet
thresholding may play any significant role.

4. CONCLUDING REMARKS

In this paper the problem of identifying nonlinearities in a broad
class of multi-channel nonlinear models has been addressed. No
a prior information about the nonlinear characteristics and input
signal probability density function is required making the identi-
fication problem of a nonparametric type. Using the concept of
the multivariate regression function estimation and the marginal
integration idea, the nonparametric identification algorithms us-
ing multiscale expansions are formed. Their rigorous convergence
properties are established and, in particular, the best possible lo-
cal rate of convergence is obtained. The convergence results hold
under very mild restrictions on the nonlinear characteristic and the
input density function as well as on the system dynamics.
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