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Abstract. The non-linear subsystem of a Hammerstein system is identified, i.e., its

characteristic is estimated from input-output observations of the whole system. The

input and a disturbance are white stochastic processes. The identified characteristic

satisfies a Lipschitz condition only. Presented wavelet-based identification algorithm

is calculated from ordered input-output observations, i.e., from pairs of observations
arranged in a sequence in which input measurements increase in value. The mean

integrated square error of the resulting estimate converges to zero as the number

of observations tends to infinity. Convergence rate is insensitive to the shape of the

probability density of the input signal.
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1. INTRODUCTION

Motivations. The block oriented approach to
the non-linear system identification has been re-
ceiving growing attention in the theoretical lit-
erature, see Bendat [1], Billings [2], Billings and
Fakhouri [3], Priestley [22], and in applications in
various fields, e.g., control, Zi-Qiang [24], chem-
istry, Eskinat et al [6], biology, Emerson et al.
[5], Hunter and Korenberg [16], Korenberg and
Hunter [17]. The main idea of the approach is that
the identified system consists of simple subsystems
such as linear, dynamic and non-linear, memo-
ryless. The main objective of the block-oriented
identification is to recover descriptions of all sub-
systems from observations taken at input and out-
put of the whole system. So far, the greatest at-
tention has been paid to Hammerstein systems,
i.e., cascade systems consisting of a non-linear
memoryless element followed by a linear dynamic
one, see e.g. Narendra and Gallman [20], Haist
et al. [13] and Lang Zi-Qiang [24]. Authors men-
tioned above have assumed that the non-linearity
is known up to a finite number of coefficients.

The most common restriction imposed on the non-
linearity confines considerations to polynomials
which coefficients are estimated. Resulting iden-
tification problems are parametric.

Inspirations. Greblicki and Pawlak [10] and
Greblicki [7] significantly enlarged the class of
considered characteristics. Their restrictions are
mild, which means that their a priori informa-
tion concerning the non-linearity is extremely poor
since they assume that the characteristic is, e.g.,
bounded or square integrable only. Owing to that,
the family of all possible characteristics admit-
ted by them is so ample that can not be repre-
sented in a parametric form. Therefore, their non-
parametric identification problems are closer to
real problems encountered in applications.

The non-linear characteristic in the Hammerstein
system has been already recovered with various or-
thogonal series estimates by Greblicki and Pawlak
in e.g. [11], Greblicki [7], Pawlak [21], Krzyzak
[18], Hasiewicz [14, 15] and Sliwinski [23]. How-
ever, convergence rates of their algorithms are sen-



sitive to irregularities of the input probability den-
sity, while ours is not. Algorithms with conver-
gence rates independent of the shape of the in-
put signal density have been proposed by Greblicki
and Pawlak [12] and Greblicki [8].

Scope of the paper. In this paper, the problem
of recovering the non-linearity in a Hammerstein
system is also non-parametric. The characteris-
tic is assumed only to satisfy a Lipschitz condi-
tion. We propose wavelet-based algorithms to es-
timate the non-linear characteristic of the mem-
oryless subsystem. For the algorithm the mean
integrated square error converges to zero as the
number of observations tends to infinity. The con-
vergence rate depends on the non-linearity. The
smoother characteristic, the greater speed of con-
vergence. The rate is, moreover, independent of
the shape of the probability density of the input
signal. This property is an important advantage of
our algorithms over those mentioned above, since
their rates get worse for irregular densities. We de-
rive the identification algorithm not from the orig-
inal but ordered sequence of observations. Order-
ing means that input-output pairs of observations
are rearranged with respect to input observations.
In the new sequence, input observations increase
in value.

2. IDENTIFICATION PROBLEM

We deal with Hammerstein system, i.e., a system
consisting of a non-linear memoryless subsystem
followed by a linear dynamic one (see Fig. 1), The
system is driven by stationary white random noise

{Uyn=---,-1,0,1,2---}.
Z,
(Jr” Wu, ‘/n -Y:rl,

Fig. 1. Tdentiﬁgd Hammerstein system with ky =
dand k; =cTA" 1%, i=1,2,---

We assume that,
o<y, <1.

The probability density f of U, s is unknown and
satisfies the following restriction:

0<68< f(u) (1)

with all w € [0,1], some unknown §. The non-
linear memoryless subsystem has a characteristic
denoted by m, which means that

W, = m(Uy).

The characteristic m is a Borel measurable func-
tion and satisfies a Lipschitz condition, i.e.

|m(uw) — mv)| < Lju—v| (2.2)

with some L > 0, and all u, v.

The dynamic subsystem is described by a state
space equation
Xpi1 = AX, +0W,
Vo =c' X, +dW, (2.4)

where X, is the state vector at time n, and
where the matrix A, vectors b, ¢, and the num-
ber d are all unknown. So is the dimension of the
state vector. The matrix A is asymptotically sta-
ble, which means that all its eigenvalues lie in
the unit circle. The output of the system is dis-
turbed by stationary white random noise {Z,;n =
-+-,—1,0,1,2---}. Therefore,

Y, =V, + Z,.

The noise is independent of the input signal, has
zero mean and unknown variance 022. Owing to
all that, {Y,;n="---,-1,0,1,2---} is a sequence
of dependent identically distributed random vari-
ables. The sequence is a stationary ARMA sto-
chastic process.

The goal of the paper is to recover m from ob-
servations (U1,Y1), (Us,Y2),---,(Uy, Ys) taken at
the input and output of the whole system. Observe
that

where
p(u) = dm(u) 4+ c"EXo (2.5)
and where
£ = (X, —EX,)= (2.6)

= Z Ao [m(Un—s) — Em(Uy )] -

Clearly pu(u) = E{Y, |U, = u}, which means that
the regression p is observed in the presence of noise
Zn + &, Tts first component is white, while the
other incurred by the dynamic subsystem is cor-
related and depends on both m and the input sig-
nal. Observing the input and output of the whole
system, we estimate u , i.e., the regression of Y,,
on U,. The fact that we are able to recover m
only up to some unknown constants d, and is a
simple consequence of the composite structure of
the system.



3. IDENTIFICATION ALGORITHM

Preliminaries. To identify the non-linear part
of the system, we rearrange the sequence
Uy,Us,---,U, of input observations into a
new one Ugy,Uw), -, Uwm), in which Uyy <

Ug < < Ugp). Ties, ie., events that
Uyjy = Uy, for j # 1, have zero proba-
bility since U,’s possess a density. Moreover,

we define U,
sequence Uy, Uiy, - -

= 0 and Upyry = 1. The
Uiy is called the order
statistics of Uy,Us,---,U,. We then rearrange
the sequence (U1,Y7),(Us,Y2), -+, (Un,Y,) of
input-output observations into the following
one: (Uny, Yiy), (U Yiz)): -+~ (Ut Yimp). - OP-
serve that Y[;)’s are not ordered, but just paired
with U(j)’s.

Daubechies functions ¢}, (u) = 2k/2 P (2ku — l) ,
kil=---—1,0,1,2---, are, for fixed p, dilations
and translations of the scaling function (father
wavelet) ¢ (u). The index p = 1,2,---, is the
wavelet number, see [4].

Algorithm. We propose the following wavelet
estimate of p(u) based on the ordered sequence of
observations:

2k 1

Z Ay () (2)

I=—2p+2

where

afy = Vi (Uy) = Ug-n) ¢k (U) - (3)
j=1
Note that for each p we obtain a distinct wavelet-
based estimate. We will show that for each p, and
for suitably selected scale parameter k, the algo-
rithm converges to p(u) as the number of obser-
vations increases to infinity.

Convergence and its rate. The following two
theorems characterize the estimate convergence
and its rate. The first deals with conditions of
mean integrated square convergence.

Theorem 1 If

k—oo suchthat 2% /n—0 as n—oo

(4)
then,

MISEjfi—0 as n— o0

where
def !
MISE ji < E/ [ (w) — i (w)]? du
0
for any Lipschitz non-linearity m.

Second theorem establishes the MISE-convergence
rate:

Theorem 2 If conditions in (4) hold and the
scale parameter k is selected according to the rule
1
k:k(n):iloggn (5)
then
MISE ji < en~ /2 (6)

for some ¢, independent of n.

The sketchy proofs of these theorems can be found
in appendices. Observe that the rate (6) is worse
than the asymptotically optimal rate cn=2/3 ob-
tained for Fourier and for kernel estimates by Gre-
blicki and Pawlak in [12] and by Greblicki in [8],
respectively.

3.1. Haar algorithm

As an example, we present the algorithm based on
Haar functions, i.e. on Daubechies function with
p = 1. Due to simplicity of these functions which
are, in fact, scaled and translated version of the
indicator function

1 ifuwe |01
1[0,1)(U):{0 [ ) )

otherwise

the algorithm is of extremely simple form

2k 1

Z aklI Lk i+1 k u)

2

where

by = ZY Uo) = Ug-0) It 2y (V)

ok
j=1

4. FINAL REMARKS

Mixed algorithm. The proposed algorithm
consists of Daubechies scaling functions only.
One can also consider the estimate which ad-
ditionally incorporates Daubechies wavelet func-
tions o, (u) = 2M2yP (2ku—1), k1 = - —
1,0,1,2---, where ¥" (u) is pth mother function.
The resulting algorithm takes a bit more compli-
cated form

2M_q
pw = Y ahydh, (W (7)
I=—2p+2
—1 2™+p-—2

+ Z Z @mwml

m=M l=—p+1

some M < k, where &4, are calculated as in (3)
while the wavelet. coefficients are calculated as fol-
lows

B = > Y11 (Ugy = Uy 1)) ¥y (U)

j=1



One can show that the asymptotic properties of
this algorithm are the same as for the algorithm
(2) — i.e. the Theorems 1 and 2 hold for algo-
rithm (7) under the same, respective, conditions.
Tts main advantage over the former consists in
ability of expanding without necessity of recalcu-
lation of the existing part. Moreover, applying fast
wavelet transform (see e.g. [19]) to calculate the
wavelet coefficients ﬁzl, the numerical complexi-
ties of both algorithms are of the same order (cf

[23]).

Other algorithms. A superiority of the pre-
sented estimates (and of their prototypes intro-
duced by Greblicki and Pawlak in [12]) over oth-
ers, known in literature, comes from the fact that
its convergence rate is independent of the shape
of the density of the input signal, i.e., is insensi-
tive to its irregularities. The rate depends only
on the smoothness of m and holds for any f
bounded from zero while for estimates of quotient
form, as for instance the following (considered by
Hasiewicz in [15]):

2k 1

Z P ()

- I=—2p+2
fr(u) ===

Z P ()

I=—2p+2

with
oy, = ZYJ‘PM
and

- 1
Gy = n Z e (U5)
n=1

it depends on the smoothness of both m and f
and hence, get worse for rough f.

Tt should be also emphasized that our estimate is
of simpler form.

The toll we pay for insensitivity of the conver-
gence rate to irregularities of the probability den-
sity of the input signal is an increased computa-
tional complexity of the proposed algorithms. Tt
seems, however, that this extra effort is well com-
pensated.

Future works. In further studies the conditions
of convergence and its rate for the proposed al-
gorithm will be studied for characteristics being
discontinuous or continuous and multiple differen-
tiable (cf the approaches in [8] and [23]). An adop-
tion of the algorithm to the identification of the
non-linear characteristic in continuous-time Ham-
merstein system (see [9]) will be also developed.

APPENDIX

Ordered observations in Hammerstein sys-
tems. The following lemma holds for Hammer-
stein system (see [12]):

Lemma 1 Let f satisfy (1). Then for any real
q>0and anyn>1,

E (Uyy—Ug-1)) =0 ("9

any 1 =1,2,...,n+1,

2
n+1
BN (U — Uy n)™™ p =0 (n7%).
=1
Moreover
2
n-+1
<0 (n’l) .

> &5 UG —Ug-ny)
=1

Wavelet expansions. Denote the wavelet coef-
ficients of expansion of g in the pth wavelet series
as below

1
= [ v () du
Lemma 2 For any characleristic p bounded in

the interval [0,1] it holds that

oo 2M4p—2

Z Z (%1)2_’0 as k—oo (8)

m=k l=—p+1

Moreover, for p being Lipschitz

oo 2M4p—2
SN @rse o
m=k l=—p+1
some c, independent of k.
Proof of the Theorem 1. We have
2k _1q
. p 22
MISEf = Z E(af, —ag)” (10
I=—2p+2
oo 2M4p—2

D>

m=k l=—p+1

Tn the proof we exploit the following identities
1
ay = /0 p () gy (w) du
" Yo v
- > [ rwelwa

j=1YUG-n

Utn+1) v
+ / 4 ) 7, () du
U



and

Ui
= E :Y[j] /U O (U(j)> du
G-1)

=1

Further, using Lemma 1 one can show that (cf [8])

E(af, —af)? <4 (Vi + Vo + Vs + Vi)

where

Vi < 6,2Fnt
Vo < §2Fn1t
Vy < 852Fn1
Vi < (ﬁﬂ’z

for some 61, 2,83 and 64. Finally we get

MISEf < 4(2°+2p) x
(512]‘%’1 + 8201 4
§32fn 1 4 5in’2)

oo 2M4p—2

+3 3 (@)’

m=k l=—p+1

(11)

which completes the proof due to (8). l

Proof of the Theorem 2. The convergence
rate in (6) is the simple consequence of (9), (10)

and

(11). We have

MISE fi < ¢ (2% /n + 27 %F)

for some ¢, independent of k. Hence, applying to
the inequality above the rule from (5) finishes the
proof. B
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