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1. INTRODUCTION

In this work, we identify Hammerstein system, i.e.
a non-linear memoryless subsystem followed by
a linear dynamic one. We identify its nonlinear
part from input-output observations of the whole
system. The problem has received great attention
from a number of authors, see Gallman (4], Chang
and Luus [2], Tchatachar and Ramaswamy [19],
Haist et al. [10], Billings and Fakhouri (1.

All authors mentioned above have assumed that
the unknown nou-linear characteristic can be rep-
resented in a parametiric form, i.e. that it is 2
member of a class of functions which can be para-
meterized. Usually, the characteristic is a polyno-
mial whose degree does not exceed a known num-
ber. So, in order to apply successfully their iden-
tification algorithms we must possess information
which can often be unavailable.

In contradistinction to those authors, our a pri-
ort information about the nonlinear subsystem
is much smaller. We only assume that the char-
acteristic is square integrable. In the statistics,
problems like ours are called non-parametric. The
non-parametric approach to recovering the non-
linearity in the Hammerstein system has been
studied by Greblicki and Pawlak [6, 7, 8, 9], Gre-
blicki (5], Hesiewicz [11], Pawlak [14), Krzyzak
(13|, Pawlak and Hasiewicz (15|, Sliwitski [18], Zi-
Qiang [21], Vandersteen et al. [20]. Various algo-
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rithms have been proposed of which the kernel and
orthogonal series look most effective.

In this paper we present an approach which uni-
fies orthogonal series algorithms presented in the
literature.

2. THE IDENTIFIED SYSTEM

The identified Hammerstein system with input U,
and output Y} is shown on Fig. 1. In the present
work {Up;n=---,-1,0,1,---} is a stationary
white random process. The nonlinear memoryless
subsystem has a characteristic m which means
that

Wo = m(U,).

The linear dynamic subsystem described by the
following state-space equation:

Xny1 = AX,+b0W, (1)
Vn = CTXFH

where A is a matrix, b and ¢ are vectors, and T
denotes transposition. Here A, b, and c are all un-
known, but it is assumed that A is a stable matrix.
Clearly {Xn;n=---,-1,0,1,---} is a stationary
random process; V;, is not accessible for measure-
ment and we have only Y,, where

w=Va+2Zn

and where {Z.} is an additive stationary noise
with zero mean and finite variance. Moreover,



processes {Un} and {Z,} are mutually inde-
pendent. Our goal is to recover m from input-
output observations of the whole system, i.e. from

(U, Y1), (Un, Vo).

b W, v, | ¥
__"4] m ::,_ {k;} hanse ...—_"_'-,_

Fig. 1. The dentified Hammerstein system. ky =
Qand k, = cT A1, ¢=1,2, -

We also assume that U, € A with some A, In the
paper. we consider cases for which A is a finite
interval, half real line or the whole real line.

By f we denote the probability density of U,
which is assumed to exist.

3. BASIC ALGORITHM

The idea of our algorithms is based on the fact
that

E{Yas: [Un=u} = am(u) + 5,

where o = ¢7'b, § = ¢TAEX,. For the sake of
simplicity, we denote

plu) = em(u) + 6.

Coefficients a and § are unknown and can’t be
estimated due to the fact that the inner system
signal is not measured.

To identify the nonlinear subsystem, we apply or-
thogonal functions. Let ¢, (u), k=0,1,2,:--, bea
sequence of such functions, i.e. a sequence of com-
plete orthonormal functions in a set A. If A is a
finite interval, one can apply the trigonometric or
Legendre orthogonal functions. If A is a half real
line, the Laguerre functions can be employed while
for A being the whole real line, Hermite polynomi-
als can be used Compactly supported orthogonal
wavelets can be exploited for finite and infinite in-
terval A (see Appendix).

We assume that
< 282 2
ﬁiﬂ\ak(ﬁﬂ sc (2)

for some orthogonal series. and

max g (u)| < ck? (3)
for others.
Observe that W
o g
wlu) = )"

where g(u) = p(u)f(u). Expanding ¢ and f, we
get

g(u) ~ > arpi(u),
k=0
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and

flu) ~ ) brege (),
k=0

where
0x = E {Yaz194(Un)} and by = Eg(Ua).

By sa(u;g) and sp{u, f) we denote partial expan-
sions of g and f, respectively. It means that

sa(ui9) = > arpy(u)

k=0

and

n
st f) = bugi(u).
k=0

Since both ai and bx can be easily estimated,
our basic algorithm recovering p has the follow-
ing form:

q(n)

Y akoe(w)

k=0

q{n)

Z Bk‘r“k(u)
k=0

Alu) =

where

i n . 1 n
G = =) YirwulU) and b = = 5 o, (U5).

1=0 i=0

In the estimate g(n) is a sequence of integers. We
show that the proper selection of the sequence
makes the algorithm converge to u(u).

4. CONVERGENCE OF THE BASIC
ALGORITHM

Denote
q(n)

§u) =) drpy(u)
k=0

and
q(n)

flu) =" begy(u)
k=0

and observe that i(u) = §(u)/f(u). Clearly.
Eéy = a; and Ebx = b,. Owing to that,

g(n)
E§(n) = ) axpy(w)
k=0

and
q(n)

Ef(w) =) begi(u).

k=0

We can now give the following



Lemma 1 Let
g(n) —oc as n — 0. (4)
Then
lim Eg(u) = g(u) and lim Ef\u) = f(u)
ne— L
at every point at which

Nim_ sn(u;g) = g(u) and lim sn(u; f) = f(u).
(3)

respectively.

and f(u)

We shall now examine variance of j(u)
Observe that

; 1 .
g(u) = :1. Zﬂyl*rl@qtn)(r—hu]

where
W) =3 () (u)
R=0

Observe in passing that due to (2)
q ™
2 & n)+
max [Py (v,u)| S ) 2F < a2 (f)

with some d. Thus

5 1 =
var [g(u” = ﬂ_zm [Z{; Y'H-l@q(n)(Ui:u}]
= Vi(u) + Va(u).
where
1 n
== [Yir1®(a) (U, u)]
=0
and
1
Va(u) = 2
x Z Z cov [Kﬁ-l@q(nl (U,,, 'h'.}, }’J';‘l@q(ﬂ}(Uj' u)} .
=0 7=0
FE

Owing to (6)
d‘222q(n)+2 it
e 5BV

+1
i=0

92q(n)+2
o{5)
n

In turn, because of (10)

cd?92a(r)+2 nol
> (-4

i=1

2q(n)+2
o (2202,
n

In this way we have verified the following

Vl (?J.)

IA

n2

Va(u)

I~

Lemma 2 [f

22q(n)+2

= —0asn—zo (7)

then

llm var[g(u)] =0 and lim var [f(u} =1,

n—co

—

If. moreover, orthogonal functions satisfy (3), then
one can show in a similar manner that

Lemma 3 [f

q-lﬁv'f! (?’1)
L

— 0 asn— nc, (B)
then

hm var [9(u)] =0 and Jim var[‘(u)} =
We are now in a position to present

Theorem 1 If (4) and (7) hold for orthogonal se-
ries satisfying (2) (or if (4) and (8) hold for series
satisfying (3)) then

Llu) — mn(u}.+ 8 asn — co in probability

at every point v € A at which (5) hold and
fu) > 0.

5. PARTICULAR ALGORITHMS

The following Corollaries are now simple conse-
quence of our Theorem and facts given in Appen-
dix.

Corollary 1 If

2
lim g(n) = o0 and lim 25 oy
n—oo n—ea T
then the trigonometric series algorithm converges
at every pownt u € (—m,w) at which both f and g
are differentiable and f(u) > 0.

Corollary 2 If

2
=00 and fim T g
n—00 mn

Jlim_g(n)
then the Legendre series algorithm converges at
every point u € (—1,1) at which both f and g are
differentiable and f(u) > 0
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Corollary 3 If

6
lim g(n) = oc and lim ¢(n) =0,
N—00 n—aoo n

then the Laguerre series algorithm converges at
every point u € (0.cc) at which both f and g are
differentiable and f(u) > 0.

Corollary 4 If

gSf:}(n] B

lim g(n) = oo end lim
n—oc i

n—eo
then the Hermite series algorithm converges at
every powmt u & (—oc,00) at which both f and g
are differenticble and f(u) > 0.

Corollary 5 If
?2q{n]+2

lim g(n) =2c and lim

L—e2C n—~oQ

=0

then the Daubechies wavelet series algorithm con-
verges at every point u € (—oc,o0) at which both
[ and g are continuous and f(u) > 0.

CONCLUSIONS

In the paper we have presented the approach uni-
fying the orthogonal series algorithms racovering
the non-linearity in Hammerstein system, We have
shown that the proper selection of the algoritam
complexity, with relation to the employed orthog-
onal series and number of measurements, makes
the algorithm converge. The convergence of the
algorithm holds at every points of convergence of
the respective orthogonal series,

APPENDIX
A ORTHOGONAL FUNCTIONS

Let A be a fixed set and let p be a function such
that [, p*(z)dz < oco. Let w,(z),k = 0,1,2,---
be a complete set of functions orthonormal in
A and let s,(x) be a partial expansion of p in
the series, i.e. let s4(x) = ¥ p_,arpi(z), where
ag = [, p(z)¢(z)dz. Below, we present various
orthonormal series functions and examine the fol-
lowing convergence

Jim_ sa(a) = p(a) ©

Trigonometric series. Let A = [—7, 7] and let
o (z) =% E=0,£1,+2,.-.

It is clear that max_r<z<- ‘e-““l < 1 and hence
6§ =0 in (3). Now the partial expansion has the
following form s,(z) = Elkil=0 a:g;(z). It is well
known that (8) holds at every point z € (-7, %)
at which p is differentiable, see [15].
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Legendre series. Let A =[-1,1} and let

pe(2) = (V2k +1/V2) Pelz),

where

Pi(z) = (1/2*k!)(d* /dz*) (22 - 1)
is the kth Legendre polynomial. One can verify
that Py(z) = 1, Pi(z) =z, Pa(z) = (3/2)x? - 1/2
and so on. We have max_j<z<; lei(z)] € 1 and
thus & = 0. Moreover (9) holds at every point
z £ [—1,1] at which p is differentiable, see [16].

Laguerre series. Let A =[0,00) and let
04(2) = 2Ly (),
where
Li(z) = (1/k"e*(d* /dz*) (zFe™7)

is the kth Laguerre polynomial. We have Lg(z) =
1, Li(z) = —z+1, Ly(z) = 2%/2 =22+ 1, -,
Since it is known that maXocrcco |@i(z)] < ck
with some ¢ then 6 = 1. Moreover, (9) holds at
every point = € (0, cc) at which p is differentiable,
see [17].

Hermite series. Let A = (—o00,00) and let

ex(z) = (1/\/2%k!/m) Hi(z),
where '
Helz) = (=1)%e (d* /dz*)e~="

is the kth Hermite polynomial. One can verify that
Ho(z) = 1, Hi(z) = =2z, Hao(z) =422 — 2, ---.
It is known that max_eo<zcco Jox (Z)] < ck=1/12
thus § = —1/12. Moreover (9) holds at every point
T € (—o0,00) at which p is differentiable, see [17].
series. Let A =

Daubechies wavelet

(=00, 00) and

Tmax (2]

¢o(z) = Z:

"=Nmin (2ip)

D q (2)

{max(zik,p)

eelz) = E

=t (zik,p)
for k=1,2.---, and fixed z € A, and where
Dia(e) = DPle—n),
W (z) 22 P (2% - 1)

W}f{ (z),

are translated dilations of functions DP (z) and
172 (z), being the father and mother wavelet of the
pth Daubechies wavelet family, see [3, p. 194]. The
indices n and ! run from ngmi, (z;p) = |z) - 2p—2
t0 Mmax (T;0) = |z| and from lnia(z;k,0) =
12%z] —p +1 t0 lnax (&3 k,p) = |2%z] +p— L.
respectively.



Remark 1 Alternatiely, one can set

tenax(2:K,p)
(@)= > wE(2) k=021 £2 .

t=lmin(zi%,0)

In this case the partial expansion twrns to the form

=
sk(r) = Topzp @i, (2):
[n both cases max_,oczen @ (2)! < ¢2%/2, The
convergence (9) holds at every point £ = (—x. x)

at which p is continuous, see [12].

B HAMMERSTEIN SYSTEM

The lemma below holds for anv f and any m.

Lemma 4 Let ¢ be a Borel measurable function.
Then n the Hammerstein system
cov [Xns18(Un), X10(Un)]
= A" cov[Xo, Xo] ATE? (6(Us)}
+A™BE{XT} AT cov [m(Us), 6(Us)] E{#(Us)}

+ AT E{6(Us)} AT cov [m(Ug), m(Us)a(Uo)|

forn=1,2,3--

Proof. The proof is straightforward and is
omitted. W

Corollary 6 Let ¢ be a bounded Borel measurable
funetion. Then in the Hommerstein system

lleov [Xn+10(Un), X19(Uo)]ll < va® A" (10)

forn=1,2,3,--:, where d = max|p(u)| and v is
independent of n and ¢.
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