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ABSTRACT

The paper deals with recovering non-linearities in the complex time-series systems composed of a static Non-
linear element and a Linear dynamic part connected in a cascade (shortly: NL systems). The systems are driven
by random signals and are disturbed by additive random noise. The a priori information about the systems is
non-parametric. To recover non-linear characteristics, a class of non-parametric identification algorithms is

proposed and analysed. This class is based on multiscale approximations - a basic concept of wavelet theory.

1. INTRODUCTION

In this paper, we examine wavelet approach to identification of non-linear systems,
suited to the case when our a priori information about the system to be identified is
confined to only some qualitative features of system characteristics. We propose a class
of algorithms to estimate non-linearities in the dynamical NL (Hammerstein) systems
(cascade connections of a static non-linearity and a linear dynamic element), driven by
random signals and disturbed by white or correlated random noise. The identification
algorithms are based on the idea of multiscale approximations, a leading concept of
wavelet theory ([1], [9], or recently {7], [8]). The paper is an extension of [3] and [4].

2. MULTISCALE APPROXIMATION

Let ¢(x) be a real function whose translates { ¢(x-n)}, n € Z, the set of integers, are
orthonormal in L2 (R) and form an orthonormal basis of a subspace V;, of L? (R). Let
moreover ¢, (x) = 2mi2 ¢(2™ x - n) be scaled and translated versions of ¢(x) and let V,,
= lin {¢,,,(0)} C 12 (R) be the ’dilation space’ associated with V), (with orthonormal
basis {¢,,.(x), » € Z}). Suppose that for m € Z the V,’s form an increasing chain of
subspaces:
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cV, cVyecV, ¢ cV < - c LAR)

1 m

and that

lim V= {0}, im V- [%R)

Such ¢(x) is called a "scaling function" and the sequence of subspaces { ¥, } constitutes a
multiscale (multiresolution) approximation of I? (R) (see, e.g., the aforementioned
monographs). Observe that the basis functions ¢, (x) of the resolution spaces V, are
generated in an easy and automatic way from a single initial function ¢(x) by only scaling
(the scale factor m) and shifting (the translation factor #). Any function F(x) &€ L? (R) can
be approximated in V), as follows

o0

F(x7m) = Z amll¢mn(x) (21)

n=-m

where the coefficients «,,, are given by

Xy = [F(x)¢mll(x)dx' (22)

The approximation F(x;m) in (2.1) is thus the orthogonal projection of F{(x) on ¥, and the
sequence {F,(x) = F(x;m)}, c 7 is the multiscale approximation of F{(x).
In the following, we shall assume that the basis functions ¢, (x) of the resolution
space V,, are such that
(b, (X)] < dXx)2*",  sup,cgld..(x)]| = d 287, all n (2.3)
some d(x) and d; independent of m, and that the scaling function ¢(x) is supported in a
compact set, [s),s,] say (equals zero outside [s),s,]). Then ¢,,(x) are supported in
[(s,+n)/2™, (s,+n)/2"™], and consequently the sum in (2.1), for each scale m and each point
x, can be truncated to finite set of n, n;, (x;m) < n < n . (x;m), yielding

F(x;m) = Z amn d)mn (x ) (2.4)

n=ng(eom)

max

with

n . (x;m)=[2"x-s5,]+1 and n, (x;m) = [2"x 5] . (25)
where [v] stands for the integer part of v. In (2.4), for every m and every x, the number of
summands does not exceed S = [s,-s5,;]+1.

3. THE NL SYSTEM

The NL system is a tandem connection of a non-linear memoryless element, with a
characteristic R, followed by a linear output dynamics. The linear dynamic part is by
assumption a discrete-time time-invariant and asymptotically stable element operating in
steady state, with the impulse response { kp ;p=0,1,... }. We assume that the system input
x;k=..,-1,0,1,2, ...} is a stationary white random process with finite variance. The
probability density of x, exists and is denoted by /. The internal signal w;=R(x;) (output of
a static non-linearity), interconnecting both parts of the system, is not accessible for
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measurements. The overall system output y, is disturbed by additive stationary random noise

{z,,k=...,-1,0,1,2,..}, i.e. the following equation holds
Ve © Z A'p}—\’(‘xlc-p) " (31)
p=0

The noise is by assumption

(a) white, with zero mean, £z, = 0, and finite variance, varz, < o, or

(b) coloured - obtained as an output of a discrete-time time-invariant and
asymptotically stable linear filter operating in steady state and driven by a zero mean
stationary white noise {g;k=..,-1,0,1,2,..} with finite variance, i.e. Eg, = 0,
varg, < co.
Processes {x,} and {z,} ({x,} and {g.}) are mutually independent. The form of system
non-linearity R is completely unknown and we only assume that

[R(x)| < a,|x| + a,

some a; and a,, and moreover that [, f3(x)dx < .
Our aim is to recover the non-linearity R from input-output observations {(x,,y,)}
of the whole system (implicit and non-parametric identification task).

4. IDENTIFICATION ALGORITHM

The key in derivation of our identification algorithm is the recognition that for whichever
white or coloured noise it holds (cf. (3.1) and [5])

E{y, |x,_,=x} = cR(x), 4.1)
where ¢ (= A\ ) is a constant (for clarity of exposition, we have here assumed that Ew;=0,
i.e., that for instance the non-linearity R is an odd and the input probability density fis a

symmetric (even) function). It is permitted in (4.1) that Ag = \; = ... = \;_; = 0, i.e. some
delay is allowed in the linear subsystem; we only assume that h; # 0. In turn, we can write
cR(X) = g(3)/f(x), “2)

where g(x) = E{y,|x, ,=x}f(x). Since [ f*(x)dx < 0 and [ g*(x)dx < %, the numerator
g and denominator fin the decomposition (4.2) may be approximated in the resolution space
V,, by the series (see (2.1)-(2.2) in section 2)

gy = Y an b and fom) - Y b))

FHERE R

where

amn =E {yd (‘bmﬂ(x(})} and bmn = E¢m(x0)
For the scaling function with compact support this leads to the following natural m-scale
estimate R, (x;m) of cR(x):

o {x:m} nmax(x;m)
RN (X;m) = E amn,N ('bmn (x) / Z bmn,N (bmn (x) (43)
nEnge (xom) nEnge (gm)
where n ;. (x;m) and . (x;m) are as in (2.5) and where a,, and bmn’ ~ (estimates of

a,,,’s and b, ’s) are computed from N (random) observations {(x, Yeea); k=12, N}
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of the whole system input and output as follows:

N N
1 1
amn,N e }: y}c«-d d’mn (xk) ) bmn,N = Z ¢mn (xk) (44)
N & N &

Observe that the numerator and denominator of (4.3) contains (at each resolution 1/2™) the
finite number of at most S components (cf. section 2).

5. CONVERGENCE

Assuming that the scale factor m depends on the number N of data in the sample
HETIR TN d)}I,f:l, i.e. m = m(N), and grows with growing N in such a way that

m(N) = o, 2UasBym(N) 1 N 5 () 5.1)
as N — o0, one can prove the following theorem.

Theorem 1: Let all the assumptions of section 3 be in force. Let R be odd and f even, and
let the multiresolution basis functions {¢,, (x)} satisfy the conditions (2.3) in section 2. Let
the scale parameter m = m(N) fulfil the conditions (5.1). Then for white as well as coloured
noise, for the estimate (4.3)-(4.4) we have the convergence

Ry(x;m) — cR(x) in probability
as N — o, at every point x € (-¢0,°0) at which f{x) > 0, and both

Pnaal i) (i)
Y 4,8, > cREOfx) and 3 b,8,,(0)=fx) as m = o
ne=npo(xim) n=ng(xim)

It should be remarked that by applying the algorithm (4.3)-(4.4) we can only estimate the
system non-linearity with accuracy to the scaling constant ¢. This is however an unavoidable
consequence of the cascade complex structure of the system and assembling character of the
data {(x;..4)} used for identification.

Imposing some additional 'regularity’ conditions on R and f, we can establish the rate
of convergence of Ry, (x ; m) to cR(x). Assume to this end that R(x) and f{x) are bounded and
locally Lipschitz functions, satisfying the conditions

sup, [R(x)| < o, sup, f(x) < @ (52)

and
IR(x+h) - R(x)| < Lg h [P, |f(x+h) = f(x)| < L;|h[" (53)
with exponents 0 <p,r <1 and |h|<1. Denote § = min (p,r). One can prove the theorem.

Theorem 2: Let the conditions of Theorem 1 hold. Let moreover R(x) and £x) satisfy the
assumptions (5.2)-(5.3) and let the scale parameter m = m(N) be optimally selected as

1
B 54
mopl(N) [2(8+1)10g2N} ( )
Then asymptotically, without any distinction for white and coloured noise, it holds

[R, (x;m) - cR(x) | = O(N C-(-{ePNRCDY in probability (5.5)
where « and 8 are as in (2.3) of section 2.
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The rate of convergence in (5.5) is determined, through the index 8, by the smoothness
of more rough function from among R(x) and fx) (with smaller Lipschitz exponent in the
proper Lipschitz condition). This rate also depends on the exponents « and 3 in the bounds
(2.3) characterizing multiscale basis functions {¢,,,(x)}.

We emphasize the important fact that our algorithm, convergence conditions and rate
of convergence remain the same for white and coloured noise.

6. EXAMPLE

For the Haar multiscale approximation, the scaling function has the form

¢px) = Iy ), X € (~,%9)

(is supported in [0,1]) and the resolution spaces V), are spanned, for each stale m € Z, by

Gy = TP B2 = T =2 e @ mEZ 6D
om o,
Obviously, for the basis functions ¢ ,,,(x) as in (6.1) the conditions (2.3) of section 2 are
satisfied for e = 8 = 1/2. Application of the Haar basis {¢}; a0} in the algorithm (4.3)-
(4.4) yields for each x € [n/2™, (n+1)/2™) the estimate

RH,N (X;m) = aH.rmz,N / bH,mn,N (62)
where
. n n+l
Ay ma N T Z Yied by = #ix E[—, )}
. n n-+l A
(k.xke[;’;,?))

and where # denotes the cardinality of a collection (in the above quotient, the common
factor 2/ N was omitted). The denominator of the estimate (6.2) counts the number of
measurements x, in the interval [n/2™, (n+1)/2™), containing the particular reference point
x at which the estimation is carried out, and the numerator selects and sums up the
corresponding output measurements ;. 4, including the possible d-step delay in the system.
This gives the sample mean of the output y in the respective interval of the length 1/2™ as
the estimate of cR(x) at x. The scale factor m (precisely: the resolution level 1/2™) controls
the size of the neighbourhood around the point x in which averaging is made and determines
thereby sensitivity of the estimate to the details in the run of cR(x).

Using Theorem 1 and the well known facts concerning convergence of the Haar
multiscale approximations [6, Theorem 2.1], we can conclude the following;:

Corollary 1: Let the assumptions of Theorem 1 hold. If the scale factor m increases with
N in such a way that m(N) — oo, 22m(NYIN —» () as N — <, then for both white and
coloured noise
N
R, y(x;m) — cR(x) in probability
at every point x € (-0,0) at which fx) > 0 and both R and f are continuous.

Employing in turn Theorem 2 and assuming that in particular the Lipschitz exponents
in (5.3) are p = r = 1 (i.e. 8 = 1), we infer that in such a case the (optimum) in-probability
rate of convergence of Ry y (x; m) to cR(x) 18 of order O(N ’“4), where the scale factor m
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is chosen as (cf. (5.4))

1
Mo (N) = [Z log, N |
This rate is comparable with that obtained by employing classical Hermite or trigonometric

orthogonal series expansions in the case of differentiable R and f, however the identification
algorithm is then much more complicated than (6.2) (see [2] for comparison).

7. CONCLUSIONS

The identification algorithm presented in the paper is based on multiscale approximations
associated with scaling functions of compact support. The algorithm is non-parametric, i.e.,
may be applied to estimate NL system non-linearity when the a priori knowledge about the
system is very small, and in particular no parametric representation of the unknown
characteristic of non-linear static block is known. The algorithm is very simple and requires
only elementary computations. For the use of the algorithm, only a set of weighting
coefficients a,,, 5y and b,y must be calculated from experimental data and these
computations can be done automatically and in short time - due to the specific
‘reproducible’ form of the multiscale basis functions, all of which are generated from a
single initial scaling function by merely dilation and translation. Another advantage of the
algorithm is that it easily copes with correlation of the noise. Both the form of the algorithm
and the convergence conditions and properties (domain and rate of convergence) are the
same for white and coloured noise (of arbitrary correlation structure). This is in sharp
contrast to parametric methods and significantly broadens applicability of the algorithm.
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