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Abstract. The paper deals with the non-parametric identification of dynamical systems
based on the idea of orthogonal expansions. A general orthogonal series algorithm for the
identification of Hammerstein systems is proposed. Conditions for its in-probability
convergence to the true non-linear characleristic are given. The addilive noise is correlated.
Then varicus versions of Ihe algorithm, corresponding to classical orthogonal series
(trigonometric, Legendre and Hermite polynomials) as well as to the compactly supported
orthogonal wavelets, are presented and discussed.
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1. INTRODUCTION

It is well-known that the identification of systems in
the presence of comeloted noise is much more
difficult than idenlification in the white noise
environment, both in theoretical and practical aspects,
and generally requires special steps to oblain elTicient
procedures. For instance, in the case of lincar
dynamical systems the popular least squares method
fails for correlated noise and, therefore, essenlial
modifications are necessary. They depend on the
particular correlation structure of the noise and lead
to variety of methods of local applicability, The

problem is by far more complex for non-lincar
systems.

In the paper, we propose the class of algorithms for
non-lfinear systetn identification, which

(i} easily cope with correlation of the noise,

(if) are effective for a wide class of noise models,
(iff) can be implemented under poor a priori
knowledge of the system,

(iv} are computationally simple.

The algorithms are proposed to identify Eammerstein
systems, These systems are non-linear dynamical
complexes, which consist of a static non-linearity
followed by a lincar dynamics. Such tandem

conneclions are often met in confrol theory as well as
in communication theory, image processing, or
biocybernetics, e.g. [5]. 1t is assumed that the internal
signal, interconnecting lwo parts of the system is not
accessible for measurements and only input-output
signals of the overall system are measured. It is also
assumed that disturbances affecting the system are
produced by a linear dynamics from white noise, ie.,
in general, are non white. The attention is focused on
estitnating non-linear part of the system under poor a
priori knowledge (which is rather standard in real
applications). Consequently, the problem is non-
parametric, i.e., no finile parametrization is pre-
selected lor the static characteristc of the unknown
non-linearity. The identification of the linear dynamic
part of the system is simpler is omitted here.

2. THE SYSTEM

The Tlammerstein system is presented in Fig. 1. We
shall assume that (he system is driven by a sequence
{U,in=..,-1,0,1,..} of independent identically
distributed (i.i.d.) random vartables with zero mean
and finite variance. The nonlinear static characteristic
m is by assumption a Borel measurable function,
Consequently, the interconnecting internal signal (not
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accessible for measurements)

1w, =m(U,)

r

is a random variable and {Uf" 101 = = L0 Ve ) 18
a stationary random noise. We make the following
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Fig. 1. The Hammerstein system

Assumption i,
In the syslem,

|me)] = ¢ lu| + e,
some ¢ and ¢y,

Owing to that, 1‘3‘]-1”“2 < o, The linear subsystem, in
tern, is described by the Tollowing stata equation

= - ’
Xyt AX, + bW, 1
4 = T~

R

where X is the state vector at time ». Assuming that
the linesr sub}s)*stem is asymplotically stable and
recalling EW, <o, we find V, arandom variable,
The output of the linear subsystem is disturbed by an
additive stationary random noise Z_ | ie. we nbhserve

"

}.;l = I/rfl iy Z(l

however the noise Z_ is not necessarily white.
Condrary, we assume that it is itsell the output of an
asymptotically stable linear system (filter) excited by
a stationary while noise, ie, that it is formed as
follows

Eull = PEH i qén
Z, =38"E..

(2)

where &, is  a  filter state vector, and

fe,in=.-1,0.1,...} a sequence of iid random

variables with zero menn and finite variance.

Mareover, by assumiption, random  processes
I s L - . =

(U :n=__,-1.0.1...} and fe, insa =100

are muiually independent.

'The problem is to recover the characteristic m of a
stalic non-lincarity from input-output obscrvations
(U, V). (U Y), ... .(U,Y,) of the whole system.

JIDENTIFICATION ALGORITHM
Observe that
E(Y,, , |U,=ul) =a, + am),

where a =c7h and a,=¢ "AEX,,. For the sake of
silmplicity, we assume that

the distribution of U is symmetric,
m is an odd function.

Owing to that, @, =0 and
ELY, |U,=t} = amu). 3)

Ihus, recovering the nonlinear characteristic »i is
nclually equivalent 1o regression estimation, Let us
now observe that

- ]
am(ie) ) H

where

gy = E{Y, |, |U, =u} fw).

and where /' is the probability densily of U, (assumed
lo exist), The nominator g and denominator /" of the
above expression will be expanded in a series
{ip,ik=012,.] of functions orthonormal in a set
D (being specified later). We assume that all ¢,’'s
vanish outside D. The orthogonality means that

{ 1 fork =m

0 otherwise

f“[’k(fl)fp,,,{u)du =

12

On the the densily f, we ithpose the following

dssumption 2.
In the system,

ﬁ)fj[rr)r.h; < 00,

Observing (hat, morcover, f 2 21)dun < oo, we can
8

wrile

20 ~ Y a (), and flu) ~ N bgw),
k-0 k=0

where
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@ = E (Y, ¢ (U)}, and by = Ey (U),

respectively. This leads to the following natural
estimate () of am(u):

Ny

z ?rk P (20)
I - (4)

2

Z /Bk . (20)

k=0

where 3,‘ and };k (estimales of a; and by) are
computed from the random observations {(U/,V); i =
0,1,...,n} of the system input and cutput as follows:

T | ol
?rk"’ '1' E Y, o) and ?J;‘ : .*Zn o, (1)
"o -

and {N(m)} is a sequence of integers depending on the
number of data n.

Respectively, for compactly supported orthogonal
wavelets {Y,; & = ..,-1,0,1,..} we cun write

glu) ~ 3 Y ay ()  and

kf=0 |f] -0
flwy ~ 3 X by ),
|&|=0 j{|=0

where
a, = E{Y, \,(U)} and b, =E i, (U)

and as a wavelet estimate (1) of am(u) = g(u)/f1),
by analogy to (47, we take

] o=
YN by, a0
= _ lkl-0jil-0
Rce) Ny e ’ (S)
E by Wy (20)
k=0 |it=0
where
w1 |
I g :
dy=— Y. Y, ¥u(U;) and b, = ;. IR MEHE
n i-o N .

Actually, the basis functions are ol the form
Yy (u) = 2%\ (2% - 1y

i.e. are derived From a single initial function Y(n)
("mother" wavelet) and indexed by two labels (k& -
scale, / - translation), where {(n) has compact
support (i.e. equals zero outside some compact set,
fsy.5;] say). They constitute a series of functions
orthonormal in the set 12 = R (an orthonormal basis

lor 1,2(:‘2)). The orthogonality property means now
that

. i fork=m,l=n
j'l’m(“)'|'m,.(“]d“ = ’

" 0 otherwise .
Notice that instead of (4) we have now the double
series in the nominator and denominator of (5), with
infinite inner sum in general. However, for compactly
supported wavelets (in [5,s;]) this inner sum, for
each & and each w, is truncated to give

L

0 i
> - 3
TR 11

“mibiy

where

lf"mln g ‘21’” "“g] i ﬂnd L 54 [21“” -SI]

mnx

with [v] the integer part of v, and the number of
contributing terms is

Ln

NI o= - e

bt

i

for every 4 and n» (the 'zoom in’ property of
wavelets). This simplilies (3) (o the form

Nin) jl'm.m

E z dyy iy, (1e)

(Rj=01=L 4, 5
P . a
Ny B S

E z E,u g, (22)

Jkl=0i=L

fi(ae) =

4. CONVERGENCE CONDITIONS
Throughout the paper, in particular, in all next
Theorems and Corollaries, Assumptions 1-2 hold. For

the sake of shortness, this fact will not be repeated
each time.

For orthogonal series , we assume that
[y} = etk v 1), (6)

some ¢ independent of &,

sup [ (u)] = dl(k 1y, 7

R=4H

some o) independent of & As far as wavelets are
concerned,

[l (1) | = c2°k, all ! (8)

some ¢ independent of &,
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28 [ W) | =

vER

some o independent of k (observe that (8) -
correspond to the conditions (6)-(7) with 2% in the
role of & + 1 and y,, in place of ;). Then, see [4],

&2, all [ (9)

Ea, =a, and vara, = Ok * 1) (10)

k=0,1.2,... for standacd orthogonal syslems, and

Eé,=a, and wvard, = 0(2"%nm)

for wavelets, Notice that I|1e [atter is the sane as (10),
with k -+ 1 replaced by 2k, Using these facts. the
following general convergence theorem can be proved
for the estimates (4) and (5)-(5a) ([4]).

Thegrem
(A) Standard orthogonal systems:
1F
N({n) —= = as n —>e2, (1D
and
] Nir)
'Y kY kP 0 as n - e
k=0 k=0
then

?t(u} — gmie) as n —=» o in  probability
at every point u € D at which flw) > 0, and

n
E b)) = flu) as nn — o
kot

and
n

Z a, @, (t) — am(@)fin) as n —= o,
k-0

(B) Wavelets:
If (11) holds and

p ol 2N L 0 as o = e

then

fl{iu) —= am(u) as n — o in probabilily
at every point # € R at which fn) = 0, and

L2 Lmu

Y. by W) = f(r) as n —

fel=0dal 4
and

n ',’m.’ﬂ

Z Z ay Yy (1) — am{u)f(u) ag n —~ o

Ikr=nl=l-|n5n

(here the inner series is reduced to a finile sot of 7 as

in (52); Lygin <1 S Linay):
. EXAMPLES

Now we shall present particular versions of the
algorithm  (4)-(5)-(5a) and the above theorem,
obtained by applying the trigonometric, Legendre, and
Ilermite series and, respectively, the Daubechies
families of wavelels. These orthogonal systems satisfy
the conditions (6) - (7) and (8) - (9) with various
and 3.

5.1, The Trigonomelric Serins Algorithm
Using the trigonometric complex series

dylie) = e,

k= ..,10,1.., orthogonal in the interval D = [-m,7],
we obtain the algorithm:
N}
Z: -ske,-'ku
() = &2
T e =

}: 0, etk

=
=
>

where

211*;1 en

From the general theorem (Part A), the fact that (6) -
(7) actually hold for e = 8 = 0 and standard results
concerning convergence of trigonometric expansions
[7]. we get

Coroflary 1. 1F (11) holds and

N2 /n — 0 as n — oo,

then

in probability

ey — am(ne) as n — oo

ot every poinl 1 & |-, | at which fr) > 0, and
both m and f are differentiable.

5.2. The Legendre Series Algorithm

Denote
k
P = -
2{}'(‘ dre *
k=012,.. . The P,’s are Legendre polvnonnals and

we have Py(n) = |, P\(u) = u, P5(u) = (3/2)r: - 172,
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!’j(u) = (5#‘2)1.'3 - (3/2) and s0 on. It is well known
that {p, ;& =0.1,2, ..}, where

kv 1
) = \l—zi— P(u),

k= 0,1,2,..., is a system orthonormal in the interval D
=[-1,11, (J7, Ch. 4]). The respective Legendre serics
algorithm has the following lfonm:

Ny

E a, p, 1)
- k=
) = 4—‘“;) ,

Z by (1)
ken

where
l T | s I n-l

a, == 3, YUy, md b= - 3 ),
n o B <0

Using the fact that (6)-(7) hold for o = 3 = 172, |7],

applyin results un  pointwise converpence of
PRy I B

Legendre expansions given in [7], and taking account
of the Theorem (Part A), we obtain

Corollary 2. Let ' and m’ be of bounded variation.
If (11) holds and

Nip)/n = 0 as n — oo,

then

() — am{u) as n — o in probability
at every point u &€ [~ 1,1] at which f{z) > 0.

5.3. The Hermlie Series Algorithm
Hermite polynomials are defined in the lollowing way

k
Hy () = e"ld——e it
du*

k=0,172,..17, Ch. 4]. For example, /(1) = |, H (1)
= -2u, Hy(u) = An® = 2, ) = -8 + 121, and so
on. It is known that the series

V2 k!

hy () = & "’Hk(u),

k=0,1,2,... is orthonormal in the whole real line, D
= R. Applying the Hermite serics, we get the

following algorithin:

M)
3 a ()
Y s
“(”) N :
Z by T (1)
k-0
whete
. | n- | o [ P |
ay = = Y. Vi hgU), and by = = 3 h(U).
M j-p It a0
For the series, v = -1/4 and g = -1/12, see [8].

Invoking pointwise equconvergence result in [8] and
applying the Theorem (Part 4), we find

Corollary 3. 1f (11) holds and
1

NYm)yln =0 as n — co,
then
() — am(e) as n —> o in probability

at every poinl 1t € (- o9, c0) at which both m and [ are
differentiable, and fi) > 0.

5.4. The Daubechies Wavelet Algorithm

The Daubechies wavelets are families of functions %*
=405 | ks | 4] =0520) &= 1235, With
the basic (of mother wavelet) supports in [1-5,5] and
the support widths 25 - 1 growing with the simoothness
of members (with the index s). There, as usual

D) = 22D *(2%u -1)

however tor 5 > 1 the molher wavelel D'(u) is not
given by an explicit formula but is compuled from an
iterative procedure ([ 1], [9]). For s = [ this gives the
Haar system {Hy; | &],] Z] =0,1,2,...}, where
the molther wavelet is supported in [0,1] and given by

I foru £ 00,172)
F(u) =49-1 foru € [I1/2,1)

0 otherwise .

[t is well known that {7} are orthonormal in the
whole real line (form complete orthonormal bases of
L2(RY) ie. D = R ([I1, |9]). Using the Daubechies
families of wavelets B* (for arbitrary s), we obtain

M) Lopse

Y 3 dipDutu)

D)oL

Hiin.

fip(a) =
M) L

Y. Y bypDalu)

[&[=01=L

min

where for given © and given s,
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I = [2%u-5) + 1,

~min

= [2nas-1]

Ir" T

and
1 n-\
' #
Oup = — Z Vo1 Du (U
It oj.p
akf2
- T E Y., PDIAD
oA E|-5.5))
and

n-t

-~x I _ s »
bkr,p = L DU
[

2!:1".!
-2 x

s, E N -5,8)

D4,

with A, 2kU,-J and D'(A,) being calcujated
numerically (for 5 > 1). For Haar wavelets (s = 1) we
have respectively

Lo, 2 = [ 21

. -
min may

(since two [lnar wavelets of the smne scale & do not
overlap) and

Ay = “““l ):: o+

il
A En )

Yinl

tAE2, 1)
and

. k2
By = 2—[#{AE[0.1/2) - H{AETI2,1}]
124

where # denotes the cardinality of a collection,
Taking naccount of the general theorem (Part 73),
including the fact that the conditions (8) and (9) are
now satisfied for o = 8 = 1/2 [9], and exploiting the
known results concerning convergence ol the
Daubechies expansions [G]. we oblain {hat

Corollary 4. If (11) holds and
2Ny - D az o = e,
then

[l';j(n) — am{n) as n — = in probability

at every point ¥ € (-e0oe) at which fAn) > 0, and

both »1 and / are continunous,

6. CONCLUSIONS

I. Concerning restrictions imposed on the non-
linearity, we have only assumed that Asenmption |
holds. The class of all possible characleristics  is very

wide and includes, e.g., discontinuous Finctions.
Algorithms derived from varlous series converge,
lhowever, at various sets of points,

2. Convergence rate has not been studied here. It can
be, however, shown that the asymptotic rate is not
worsen by the fact that the noise is not white but
correlated.

3. Qur estimates need only elementary calculations
based on explicitly given formulas of the orthogonal
Iyasis functions, except for the Daubechies wavelets
for s > 1 where the basis functions (mother wavelets)
must be computed numerically from an iterative
procedure.

4. The approach successfully copes with correlation of
the noise. The form of the algorithms given in the
paper is insensitive to the correlation structure of the
noise. This property becomes evident when invoking
the results given previously in [2] and [3], where only
white noise was admilted.

5. The algorithms can be used for solving system
identilication tasks under poor a priori knowledpe of
the system, when no parametrization of the
characleristic is known.
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