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Abstract.  The nonlinearity in discrete nonlinear systems of the block-oriented
form is estimated. In particular, memoryless, cascade and parallel models are exam-
ined. Algorithms being in the form of the ratio of two Laguerre polynomials are
proposed, and their asymptotic properties are established. The conditions for the
pointwise and global consistency are found. The identification algorithms are con-
sistent for a large class of nonlinear characteristics which cannot be parametrized.
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1. Introduction

Identification of a physical process is the problem of complete determination
of its characteristics from corresponding values of input and output data. A
large number of techniques exist for identification of linear models (Ljung, 1987).
There is no particular reason, however, to assume that the process dynamics can
be described by a linear model. In fact, the linearity assumption can be regarded
as a first-order approximation of stochastic discrete time phenomena, and the
nonlinear behavior is the rule, rather than the exception. The identification of
nonlinear stochastic systems has been an active area of research lately (see, e.g.,
Bendat, 1990; Priestley, 1988; Tong, 1990).

All proposed nonlinear system identification techniques strongly depend on
the selected representation of the examined system. In nonparametric setting, the
Volterra and Wiener representations have been traditionally used (Rugh, 1981),
yielding, however, complicated identification algorithms. Some parametric mod-
els have also been extensively studied (Priestley, 1988; Tong, 1990).

Another promising approach is based on the assumption that the system can
be represented by the interconnection of linear dynamic models and static non-
linear elements (Bendat, 1990; Billings, 1980), yielding the concept of block-ori-
ented models. In particular, cascade and parallel connections have received a
great deal of attention (Bendat, 1990; Billings and Fakhouri, 1982; Greblicki and
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772 W. GREBLICKI AND M. PAWLAK

Pawlak, 1989). These connections can serve as basic building blocks for more
complicated models. In fact, in Palm (1979), Sanberg (1991) and Stone (1985), it
has been demonstrated that such models can accurately approximate a large
class of nonlinear systems. See also Eskinat et al. (1991), Hunter and Korenberg
(1986), Marmarelis and Marmarelis (1978) and references cited therein for a large
number of applications of such models.

In this paper, we consider the problem of identification of a class of block-
oriented models consisting of cascade and parallel connections. We first study
the memoryless nonlinear model to establish a basic theory of our identification
algorithms. Then, we extend those results to the case of cascade and parallel
models. We are mostly interested in recovering a nonlinear element of the par-
ticular model. This is due to the fact that the identification of linear and non-
linear subsystems can be decoupled, and algorithms for identification of linear
subsystems have been presented elsewhere (Bendat, 1990; Billings and Fakhouri,
1982; Brillinger, 1977). As for the nonlinear elements, it has been typically as-
sumed that they are of a polynomial form; i.e., they can be parametrized by a
finite number of coefficients. Not all problems are, however, parametric nor can
they all be parametrized. This is the case if it is known only that, e.g., the un-
known characteristic is continuous or bounded or has a finite derivative, etc.

In this paper, we propose identification techniques which are able to be con-
sistent for a large class of nonlinear characteristics, i.e., those which cannot be
parametrized. The proposed estimates are in the form of the rational function
(l.e., the ratio of two polynomials) stemming from the theory of regression func-
tion estimation (see Eubank (1988) and Hirdle (1990) for a detailed account of
the existing theory of nonparametric curve estimation).

Specifically, we apply the Laguerre orthonormal polynomials. It is well
known that they constitute an orthonormal basis of the space L, ([0, o)).

We give conditions for the estimate consistency and rate of convergence.
Both pointwise and global properties of the estimate are examined. Some small
sample properties are also presented. The Laguerre functions have recently been
used for the problem of identification of linear systems (see Cluett and Weng,
1992; Fu and Dumont, 1993; Mohan and Datta, 1991; Wahlberg, 1991 and refer-
ences cited therein). The popularity of the Laguerre system stems from its
unique properties. First, the Laplace transform of the Laguerre functions also
defines the complete orthonormal system. Furthermore, the result of convoluting
two Laguerre functions can be written in the additive form. This property is not
shared by any other orthonormal system in L, ([0, «)) (Dooge, 1965; Holland,
1969).

2. Preliminaries

The Laguerre polynomials are defined by the following Rodrigues formula
(Sansone, 1991, p. 297)

n
1, d
nl - dx"

Ly(x)= (x" ™), n=0,1,23,-, x=0.

Each L,(x) is a polynomial of degree #, and it is explicitly given by
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k=0

Ly(x)= 2(—1%%(2);& n=0,1,2 .

Hence, Ly(x)=1, Li(x)=-x+1, Ly(x)= %212 —2x +1, La(x)=— x°16
+ 3x%/2 — 3x + 1 and so on. Note also that L,(0)=1, n=0.

It is well known that these polynomials form an orthonormal system with
respect to the weighting function ¢ %, x €[0, =), i.e

1 for n=m,
jl x)dx—{

0  otherwise,

where [, (x) = e”‘/ZLn(x) (Sansone, 1991; Szego, 1978).
Hence, the system {/,(x)} forms an orthonormal basis for L,([0, «)). Con-
sequently, every function A(x) from L,([0, =)) has the formal representation

x) = 2 aply(x)
k=0
. (1)
ap =J h(v)l,(v)dv
0
It is also known (Sansone, 1991) that the Nth partial sum in (1) can be written as

_f:h(y)dN(x, ¥)dy, where dy(x, ) is the kernel of the Laguerre system defined
as

.
dy(x, )= Z () (3). (2)

In the study of our identification algorithms, we need some properties of
dy(x, v). First of all, let us recall the following inequalities:

max |1, (x)| < ¢ (8)n (3)
d=x
forany 6 >0, n >0 (see Szego, 1978, p. 241),
max |17 1,(2)] < ¢p(8)n v, (4)

0=x<§
for any 6 >0, n >0 (see Szego, 1978, p. 178, where ¢;(8) and ¢,(8) are some
constants dependent on 8 but independent of #).
Now let x > 0 and § > 0. Then, by virtue of (2), (3) and (4)
N
rglax|alN £, ) =0(x)c(6) (Z B+ 1)
=¢(x, 5)N* (5)
and
& 1
0max )y4dN(x < (x)ey 5)( YR+ 1)
<y :

<c¢,(x,8)N7, (6)

where ¢3(x, 6) and c4(x, 8) are independent of N.
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3. Identification of a Memoryless System

In this section, we identify a memoryless system shown in Fig. 1.
Hence,

Y,=m(X,)+¢ . (7)

Input random variables X;, Xs, -+ are independent and identically distrib-
uted. Moreover, all X,’s take only positive values. They have the probability
density denoted by f. We assume that the density satisfies the following restric-
tions:

| Flxy— fO+) = Mx* 0O0<x<§ O<a=1 M=0 (8)
and
flx)=0(xv7%), €>0, x>0, (9)

The condition (8) describes the behavior of f(x) in the neighborhood of the ori-
gin, while (9) limits the behavior of f(x) in the infinity. Clearly, (8) and (9) are
satisfied for all commonly used densities on [0, =), e.g., uniform, exponential,
gammal(o, B), e =1, Weibull(e, 8), o = 1, lognormal, etc.

The random disturbance & is a stationary white noise independent of the
input signal. Its mean is zero, and variance is denoted by 0'2.

The characteristic m of the system is a Lebesgue measurable function satis-
fying the following restrictions:

Im(x)—m(O0+) < LxP, 0<x<s 0<f=1, L=0, (10)

'r}nz(x)f(x)dx < o (11)
0

It is worth nothing that the condition in (10) is satisfied if m'"(0 +) exists. The
restriction in (11), on the other hand, describes the behavior of m(x) at x — oo,
It is clear that these assumptions hold for a broad class of functions, e.g., all
polynomials, all rational functions on [0, ), etc. Hence, the class of all possible
functions satisfying (10) and (11) is so wide that it cannot be parametrized.
Therefore our problem is nonparametric. Our goal is to recover the characteristic
m(x), x €[0, ), from the input-output observations (X, ¥7), (X5, ¥3), ---.
It is clear that

m(x)=E{Y,|X, =x}, 12)

£
X, w, 4" v,

m

Fig. 1. Nonlinear memoryless system.
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i.e., that m is a regression function of ¥,, on X,. In order to present our algo-
rithm, we observe that

m(x)= iii; (13)

where g(x)=m(x) f(x) for every x, where f(x)+# 0. We shall now show how
to estimate g(x) and f(x). Owing to (1), we have

x)= 2 apl(x), (14)
=0
which means that

o0

o = [ et = [ meon £

0

As a consequence of (12), we can write

a, = E{Y, [ ,(X,)}. (15)
The coefficient a, can be easily estimated in the following way:

o =L 3y, (16)

Taking (14), (15) and (16) into account, we get the following estimate of g(x):
N{(n)

3 ()= 2 dpl(x), (17)
k=0

where {N(n)} 1s a sequence of integers. N (#») indicates the number of terms
taken in our estimate. The point at which we truncate the expansion depends on
the number of observations. We shall later show that, for a suitably selected
sequence {N(#n)}, g(x) converges to g(x) as the number of observations tends
to infinity.
Similarly, f(x)= Zi_obl(x), Wh}C means that ["L(x

— E{l,(X,)}. Consequently, /(x)= s 2 bls(x), where b, _1/702, 1zh
our estimate of f(x). In the light of (13) and (17), our estimate of m(x) is
g(x) f(x), 1e

N{(n)

2 dply(x)

W (x) = o (18)
z i)k lk(JC)
E=0

In Greblicki and Pawlak (1985), an estimate of the similar form has been exam-
ined in the case of the Fourier and Hermite series.

Remark 1. The estimate in (18) is in the form of the ratio of two polynomials
due to the identity in (13) and the fact that the density of X is unknown. In the
case, when f(x) is known and additionally it is exponentially distributed with
a mean value 1, then, owing to (1), one can estimate m(x) by

N n
= Zalto, &= LVL(X)).
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That is, in this case, we have a purely polynomial estimate of m(x). It is worth
noting that if m(x) is a polynomial of the order M, then Em(x)= m(x), if
only N = M, i.e, the estimate m(x) is unbiased.

Concerning the sequence { N (n)} appearing in (18), we assume that

N(n)— oo as 7 oo (19)
and
N;”)eo as  n—> oo (20)

Our first result concerns the convergence of #i(x)to m(x) in the pointwise
sense.

Theorem 1.  Let m satisfy (10} and (11). Let f satisfy (8) and (9). Let the num-
ber sequence {N(n)} satisfy (19) and (20). Then,

m(x)—>m(x) as n oo

in probability at every point x > 0, at which both m and f are differentiable and

flx)>0.
Proof.  First, we shall show that

E(g(x)—g(x))* =0 as  m —> oo (21)
at every point x >0, at which both f and m are di/\i;{%entiable. Obviously,
Edy = a; and Eg(x)= [m(y) f(9)dyu(x, y)dy = Zy—g azly(x) is just the
N(n)th partial sum of the expansion of g in the Laguerre system. In Appendix
B, it is shown that

Eg(x)—> g(x) as N(#n)—>

at every point x > 0, at which both f and m are differentiable. In order to verify
convergence of var g(x) to zero, let us observe that

R 1
§(x) =— L Yidyw (% X,),
n =1
where dy,) 1s the Nth kernel of the Laguerre system. Thus,

. 1
var g(x) = 7—lvar[Y}sz(n>(x, X,)]

1
= E{Vidig(x, X,)}
Since due to (7) E{Y% | X, =x}=w(x), where y(x) = mz(x)+0'§, we get
. 1{”
var 2(6) = =+ | Wkl ) £ ().

Let 6 > 0. Owing to (5),
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I:w(y)dfvm(x, y) f(y)dy = ci(x, 5)N(n)j:w(y)f(y)dy
=c4(x,8)N(n)EY?.

In turn, using (6) we have

é

')
fowmdﬁw(x, ¥) f(y)dy = ci(x, 6>N<n>j0y-%w<y>f(y)dy.

As a consequence of (8), f(y)= My*+ f(0+) for 0 =<y =<§ and for § suffi-
ciently small. For this 6, we have the above integral not greater than

s ) 8 .
ci(x, 5)N(n)[MJ‘OW(y)y“‘?dy + /(0 +)J.Oll/(y)y7dy]

It is plain that it suffices to consider fgy/( y)y tdy. This clearly is equal to
s s
ngoy”?dy + _[Omz(y)yzdy

~ 206t + [ )y hay. (22)
By assumption (10), we get
mi(y)=2m*(0+)+2[%%F  for 0=y=§.
Thus, the integral in (22) does not exceed 4m?(0+)8Y? +2I26%P*12/(28 + 1/2).

In this way, we have shown that

Varg(x)s—cg%, (23)

where cg 1s some constant dependent on x, but independent of ». Thus, (23) and
(20) yield

N(n)
n

varg(x)—>0 as —0
for all x > 0. This and Appendix B give desired (21).
Using identical arguments as above, one can easily verify that

E(f(x)— f(x)f >0 as n-—oo (24)

at any point x >0, at which f i1s differentiable. This completes the proof of
Theorem 1.

Remark 2. The conditions imposed in Theorem 1 do not require that m(x)
and f(x) are bounded. In particular, the convergence property holds for linear
and polynomial characteristics on [0, ). Furthermore, if one assumes that
m(x) and f(x) are bounded, then the condition N(#)/n — 0 can be replaced
by the weaker one N'Y2(n)/n — 0. Indeed, it is sufficient to consider
Jom(¥) f(3)di(x, y)dy, which is bounded by C[idim(x, y)dy, where
C = sup,efo..) | m(x) f(x)].

Uspensky (1927, p. 614) shows that [ d=(x, y)dy = (x "*/m)NV? + ¢ *Ey,
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where Ey is uniformly bounded with respect to N, as x varies in a finite inter-
val [x — &, x + 8], 8 > 0. This yields our claim.

Remark 3:  Theorem 1 gives the conditions for the estimate convergence at a
point x > 0. At x =0, our estimate need not be convergent (Szego, 197?1
247). At this point, the estimate of the form Zk(o)(l —kRINn))apl(x )/Z,e 0)(
— kIN(n))b,1,(x) can be considered. This is a modification of #(x) based on
the Cesaro method of summation. Using Theorem 9.1.7 in Szego (1978) and the
techniques presented in the proof of Theorem 1, one can show that this estimate
converges to m(0), assuming that m{x) and f{x) are continuous at x = 0.

Thus far we have examined only the pointwise properties of our estimate. It
is also interesting to examine some global errors, as, e.g., the mean integrated
squared error (MISE),

MISE(#1) = EJ.:[M%(x) —m () fA(x)dx .

This is a popular measure of assessing the performance of curve estimates
(Hardle, 1990, Chapter 4). To evaluate MISE(#1), let us observe that

[i2(x)(f(x) = fF(0)P +(&(x)— g(x))F].

, 2
wm(x)—m(x)F =

O ) =m(0)f = — =
Let us assume that m(x) and 5 are bounded. As a Consequence of this, there
exists ¢ >0 such that |m(x)]<c and  E(n(x)—m(x)f = (2/f3(x))
><[c2E(f(x)—f(x))2 +E(§(x)—g(x))2]. Integrating the last inequality
yields

MISE (7 <2c2EJ. (f(x)~= f(x)) dx+2EI x)—g(x))Pdx. (25)

This inequality allows us to establish the global convergence of . Indeed, us-
ing Parseval’s formula we have
N{n) oo
EJ i(x) - g(x)Pdr= L E(G, —a)’ + 2 ab. (26)
k=0 k=N(n)+1

The second term tends to zero as N (n) — . To evaluate the first term in (26),
let us note that E(d;, — a,) is bounded by

%UO m2(x) f(x)3(x)dx +G§J.0f(x)li(x)dx]
Employing inequalities in (3), (4), conditions (8), (10), (11) and arguments like in
the proof of Theorem 1, one can easily show that both _[ m?(x) f(x)5(x)dx
and fof( V3(x)dx are of order (k+1)""%. Hence, the flrst term on the right-
hand-side of (26) does not exceed ¢N V2(p)n for some ¢ > 0. Clearly, the first
term in (25) can be evaluated in an analogous way. This proves the following
theorem.

Theorem 2.  Let all the conditions of Theorem 1 concerning m and f be satis-
fied. Let, additionally, m and 5}1 be bounded. If (19) and N”Z(n)/n — 0 hold,
then

MISE(m) >0 as #n— oo,
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Some involved analysis (see Greblicki and Pawlak (1985) and Hall (1980) for a
related discussion) allovys us also to establish the rate at which the terms
DI a;% and X,y 107 tend to zero as N — oo. In fact, if

j 2P (m' P (x)Ye Fdr < oo, j xp(f(”)(x))zefxdx, p=1, (27)
0 0
then Zi_yqaf + Zily 1 6f = O(N 7).

As a result,

MISE () = (e, N (2)) + e,V ()

for some positive constants ¢y, ¢» which are independent of N and n. Hence,
under the conditions of Theorem 2 and (27), the rate of convergence of MISE (#2)
is not slower than O(n 2?"®**1) because N(n) is selected as #*/***V 1t is
worth noting that the identification algorithms based on Hermite polynomials
studied in Greblicki and Pawlak (1992) can reach (under similar assumptions on
m(x)) the global rate O(n #%?%%) which is slower than ours, which is
On 2 /221y The latter rate also holds for identification techniques based on
the Legendre polynomials (Pawlak, 1991). Here, however, one has to assume that
the characteristic is defined on a finite interval.

4. Recovering the Nonlinearity in Cascade Systems

In this section, we identify the nonlinear characteristic of the cascade system
shown in Fig. 2.

The system comprises two subsystems. The first is nonlinear and mem-
oryless, and its characteristic is denoted by m. [t means that

W, = m(X,). (28)

The other subsystem is linear dynamic and is described by the discrete convolu-
tion

Y, = 2kW,;+Z,, (29)
=0

where {k,; n=0,1,2,---} is the impulse response of the subsystem. The system
of this form is often referred to as the Hammerstein model (Greblicki and
Pawlak, 1986; 1989; 1991; 1992; Narendra and Gallman, 1966; Pawlak, 1991).
Zo, 2y, Zy, -+ 18 a sequence of uncorrelated random variables with zero mean
and variance o%.

The input signals X, X;, Xy, --- form a sequence of independent and identi-
cally distributed random variables which are independent of {Z,}. Their prob-
ability density is denoted by f, and it is supported on [0, «). We assume that it

Z
Xy ‘ W, Linear ! Y,

subsystem

Fig. 2. Cascade nonlinear system.
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satisfies restrictions (8) and (9). In turn, the nonlinear characteristic satisfies
(10), (11), i.e., Em?(X) < oo. Note that now the output process {Y,} is no longer
white.

We assume, moreover, that

=)

k2 < oo, (30)
=0

n

This and the fact that Wy has the second moment imply that Y, is a random
variable.
In further parts of this section, we shall need the following restrictions:

2 k| < oo (31,
n=0

and

p) §O|kn~j|(qu<oo. (32)

n=0j

Let us also assume, without loss of generality, that &y = 1. Let us now shortly
discuss the problem of identification of the linear subsystem. First, let us ob-
serve that

COV(Yﬂr XIZ):}/ and COV(K1+SVX?Z):ykSV szlr 2»”’7 (33)

where y = cov(m(X,), X,). Let us assume that y # 0. Thus, clearly

=L
) o
where
n—s
b= 2 (V0 =TI - X), 520, (34)
.
n n
Y=+3y, x=L13x
n oj=1 n j=1
can serve as an estimate of & for s =1, 2, ---. This result allows us to carry out

the identification in the frequency domain. Indeed, formation of the Fourier
transform of the relationship in (33) yields

hyy(w)=yK(w), |o|=r,

where /iy, (@) = (Zﬂ)flzf:_mescos(sw) is the cross-spectral density function of
processes {X,} and {Y,} and 8, = cov(Y,.,, X,,).

Moreover,
K(w) = (2r)"" X kexp(— isw)
s=0

is the transfer function of the linear subsystem. Thus, the standard spectral esti-
mation theory (Priestley, 1981) allows us to estimate K (w) by

(271:@0)_1 > ;{(s)és cos(sw),

|s|=n
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where y(s) is the lag window (Priestley, 1981). See Brillinger (1977) for the con-
sistency result for this estimate.

Let us now return to the problem of estimating m{x). First, let us observe
that

Y, = u(X,)+¢,,
where
1K) = m(X,)+ Em(X0) E
and
&, = him(X, )= Em(X, )1+ 7,

which means that we observe the regression noised by & . Hence, the cascade
model can be represented in the form like in (7). Contrary to Sec. 3, however, the
noise is now not white since & and § are correlated for i # J.

In order to recover u(x) we apply estimate (18). Symbols g, g and f, f
have the same meaning as in Sec. 3.

Arguing as in Sec. 3, we can verify that

Eg(x) » u(x)f(x) as N(n)—oeo
at every point x > 0, at which both f and m are differentiable. In turn,
var g (x) = %varmdw o, X,)]
" ;«1(1 - ;)COV[YdV ( Xs), YOdN(n)(x» Xo)]
= Vi(x)+Vo(x). (35)

Using arguments similar to those in Sec. 3, one can show that

Vi(x) >0 as N—LM)—AO.

We shall now verify that

Vo(x) >0 as N(n)—>e and %ﬂ—)

Let us observe that due to (29), for s =1,
COV[YdN n)(x X ) YOdA n)(x XO)]

-3 2 Feiko_j cov Widyim (2, Xg), W;dyin (%, Xo)]

{=—oc0 j=—o0

=k 2k cov[Wydym(x, Xs), Widyin (2, Xo)]

j=e

+ j;mks, ik oV [ Widyin (%, X;), Widyin(x, Xo)], (37)
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where W; 1s defined in (28).

We used above the fact that the input is a white noise. The covariance term
in the first sum in (37) is equal to EW, Edy,(x, Xo)cov(Wy, dy(x, Xp)) for
j < OAand EdN(”)(x, X())COV(W(), VV()dN(n)(x, Xo)) for ] = (. Since Ed\,v(,z)(x, X())
= Ef(x) converges to f(x) and E{W%dN(n)(x, Xo)} — m?(x) f(x) as
N — oo, the absolute value of the first term in (37) is bounded by ¢| %] 27:0 | %l
at every x >0, at which both f and m have derivatives, where ¢ is a positive
constant independent of .

In turn, the absolute value of the covariance in the second term in (37) is not
greater than

(var W, var dy (%, Xo))7 = (EW§ Ed} () (x, Xo))7,

which is bounded at every x > 0, at which f is differentiable.
In light of this, at every point x > 0, at which both / and m are differen-
tiable, the absolute value of V(%) is not greater than

S k) + 2 3k, k-]
n[(;()' ]') s:()jzol s+]|| ]l ’
where ¢ 1s some constant dependent on x but independent of #.
Thus, (36) holds at every x > 0, at which both f and m are differentiable.
Since (24) holds, we have proved Theorem 3.

Theorem 3. Let f and m satisfy the assumptions of Theorem 1. Let the pulse
response satisfy (30), (31) and (32). Let the number sequence { N(#n)} satisfy (19)
and (20). Then,

m(x) > m(x)+a as n— o

in probability at every point x > 0, at which both f and m are differentiable.

Remark 4:  Note that a = Em(Xy)X;_ k. Thus, the nonlinearity m(x) can
be recovered only up to the additive constant. If, however, one knows the value
of the characteristic at one point, say x = 8, then m(x)—m(0)+ m(8) con-
verges to m(x), x > 0.

Conditions (30), (31) and (32) restrict the class of admissible linear sub-
systems. One can, however, verify that every asymptotically stable system de-
scribed by the state space equations fulfills all three restrictions.

It is clear that, using the results of Theorems 2 and 3, we can also obtain the
global convergence of the estimate #1(x) applied to the cascade model. The re-
sulting rate of convergence (under the condition (27)) is the same as for the
memoryless system, ie., O(n 2??*D) Nevertheless, this is an asymptotic re-
sult, and a finite sample behavior of the estimate in those two cases can be dras-
tically different.

In order to illustrate the aforementioned results, let us consider a simple
simulation example.

Example 1. Let

n, =qn,_, +m(X,),
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Y}'z:nn_'_va n=0,+1,*2, -

be the cascade model with the first-order stable autoregressive dynamic sub-
system, i.e., |[gq| < 1.

Note that here, k, =¢”, n=0. Let Z, be uniformly distributed over
[—01,01] and X, be uniform on [0,10]. It is assumed that m(x)
=522 —2x + x)e ¥, x =0 and ¢ =0.1. The estimate performance is mea-
sured by the discrete version of our global criterion, i.e.,

Error = n’lE{élW(Xj) - m(Xj)|2},

where #(x)= m(x)—«a, and o is defined in Theorem 3. A simple algebra
shows that a = ¢(1 — q)'] E{m(X)}.

Figure 3 depicts the Error (calculated from 30 repetitions of the input-output
data) versus #n. For each #, the value of N minimizing the Error has been chosen.
The selection of the optimal truncation point is an important issue for our esti-
mates. Figure 4 shows the Error as a function of N for » = 100. The optimal N

0.7r
0.6r

Error

0.2+

0.1r

0 | 1 ] | 1 1 | J
25 50 75 100 125 150 175 200

n

Fig. 3. Error versus # for the cascade system.

0.2
0.175
0.15
0.125
0.1
0.075¢
0.051
0.025r

Error

16 18 20 22 24 26
N

Fig. 4. Error versus N for the cascade system,
»n =100, optimal N = 23.



784 W. GREBLICKI AND M. PAWLAK

Fig. 5. The characteristic m(x) = (5x3 —2x% 4 x)e*, x=0
(dashed line) and its estimate #(x) (solid line) for the
cascade system, # =100, N =23.

1s equal to 23 with the corresponding Error = 0.083.

Figure 5, moreover, shows the plot of the characteristic m(x) and its esti-
mate #(x) for n =100, N = 23. The behavior of the estimate at the boundary
is clearly revealed. The relatively large bias of the estimate for x — 0 is due to
the fact that the Laguerre series does not converge at x = 0 (see Remark 3 in
Sec. 3). This problem could be easily fixed by using #1(x) — #(0)+ m (0 +) in-
stead of #m(x).

5. Recovering the Nonlinearity in Parallel Systems

A model of some physical interest is pictured in Fig. 6, where a nonlinear
element m(x) is connected in parallel with a linear dynamic system {4}
(Bendat, 1990, Sec. 5). That is,

Y, =m(X,)+ Zokl-Xn_1+Zn. (38)
=

We assume that {k;} satisfies the assumption (30), while for m (x), the condition
(11) is in force. {Z,} i1s a white noise with zero mean and finite variance. All
these assumptions imply that £ Yﬁ < oo, The estimation of the linear subsystem
can be carried out in a way similar to that in Sec. 4. In fact, one can note that

COV(Yn-O—s,Xn):Tsty S:L 2;“';
where 7% = var(X,). Now k, can be estimated by 6,/%?, where 6, is defined

(34) and %7 is an ordinary estimate of the variance.
Clearly, (38) can also be represented in a like that in (7),

Y, =u(X,)+¢,,
where

(X)) = m(X,)+ Xy + 2k E(Xo)
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Linear system Z,

W

Fig. 6. Parallel nonlinear system.

and
én = ;kl’[Xn*i _E(sz—i)]+Zn°

The noise & , like in Sec. 4, is not white since & and 5]. are correlated for
17,

In order to recover u(x), we apply estimate (18). Notation is the same as in
Secs. 3 and 4. It is plain that

Eg(x) > u(x)f(x) as N(n)— e

at every point x > 0, at which both f and m are differentiable. In turn, var g{x)
can be written as in (35), where now Y, is defined in (38).

Following the proof of Theorem 3, we have Vj(x) >0 as N(n)/n >0,
whereas the covariance in V5(x) can be written in the following form:

COV[stN(H)(x» Xs)) YOdN(n)(x» XO)]

= k; Edw(n)(% Xo)eov([ Xy, Wodw(n)(x, Xo)l
s 0
+ 2 X koikcov Xidyon(x, Xo), Xidyon(x, Xo),

where W, = m(Xy). The first term in the above formula tends to
ksfz(x)m(x)[x — E(Xy)] as N — oo. The second term, in turn, can be ana-
lyzed in the same fashion as the term in (37) (just replace W; with X;). It should
be noted that F (X(Z)) < oo is required here. Also, conditions (31) and (32) are
needed. All these considerations yield the following result.

Theorem 4.  Let all the assumptions of Theorem 3 be satisfied. Let, addition-
ally, [7x”f(x)dx < es. Then,

m(x)—>m(x)+x+a as n—ooo

in probability at every point x > 0, at which both f and m are differentiable.

Remark 5. Theorem 4 reveals that m(x)— x converges to m(x)+ a, where
a=E(Xy)X— k. If, however, m(8),0 =0 is known, then #(x)+ m(0)
—m(0)+ 0 —x converges to m(x). In particular, the knowledge of m(0) for
6 = 0 can enforce our estimate to be convergent at the boundary point.
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It is also clear that the global convergence can be established along with the
rate as it has been done in Secs. 3 and 4. In order to complete our studies on the
parallel model, let us consider the following example.

Example 2.  Let us consider the parallel model,

n,=4qn, , + X,

Y,=n,+m(X,)+Z2,, n=0,%1%2
Here, Z,,, X,,, m(x) and g are the same as in Example 1. Furthermore, let 72 (x)
= (x)— x — «, where a simple algebra shows that a = ¢(1 — ¢) ' E{X}.

Figure 7 depicts the Error versus #, while Fig. 8 shows the Error versus N
for n =100. The optimal N = 19 with the corresponding Error = 0.16. Figure 9

0.6

0.4

Error

0.3+

0.1r

0 ] | L T

25 50 75 100 125 150 175 200

n

Fig. 7. Error versus #n for the parallel system.

081

0.6

Error

0.4}

0.2

0 L 1 n I I !
14 16 18 20 22 24

N

Fig. 8. Error versus N for the parallel system,
n =100, optimal N =19.
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-2

Fig. 9. The characteristic m(x)=(5x° =22+ x)e *, x =0
(dashed line) and its estimate #(x) (solid line) for the
parallel system, » =100, N =19.

displays the plot of m(x) and #(x) for » =100, N = 19. It should be noted
that the Error for the parallel model is larger than that one for the cascade
connection (see Example 1). This phenomenon can be explained by noting that
Y, =m(X,)+{ with { = Elemq” "m(X;)+Z, for the cascade model and
{ = Z;zil_w a7 X +7Z, for the parallel one. Then a simple algebra shows that
the variance of g, for the parallel model is greater than the var Cn for the cas-
cade one. Hence, the parallel connection has a smaller signal to noise ratio than
the cascade one. It is worth noting that this need not always be the case, and the
inverse situation can occur.

6. Concluding Remarks

It is clear that some other nonlinear models can be identified in a fashion
similar to that used in Secs. 4 and 5. A simple extension could be carried out for
models which are a combination of the cascade and parallel connections, e.g., a
model with parallel linear and nonlinear cascade systems (see Bendat (1990),
Sec. 7 for some examples of such models). Furthermore, a reverse regression
E{X,|Y, = v} can be employed for estimating a nonlinearity in a Wiener sys-
tem, ie., a system in which a linear dynamic part is followed by a nonlinear
memoryless subsystem. We refer the reader to Greblicki (1992) for a detailed dis-
cussion of nonparametric identification algorithms of this system.

Yet, another interesting extension is to replace the memoryless nonlinear sys-
tem in the aforementioned models by the non-instantaneous element. This is
illustrated in Fig. 10, where the cascade model with a nonlinear element possess-
ing a memory of the size 1 is used. Here, the input-output relation is given by

Xn Xn—l Zn

Delay Y,
m(-, -)|—{ Linear system 2

Fig. 10. Cascade system with nonlinear memory element.
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Appendix A

In Szego (1978, p. 246), we have:

Theorem 1A. Let ¢ be a Lebesgue measurable function in [0, «) and let
the following integrals exist:

1 1 .
Jlowtar, [ = +iowiar. (A1)
0 0

Let, moreover,

nij.e*%x*%up(x)mx—m as  n oo, (A.2)
n

Denote by S,(x) the nth partial sum of the expansion of ¢ in the Laguerre
series. Let S,(x) denote the nth partial sum of the expansion of (p(xz ) in the
trigonometric series in interval [vx — &, vx + 6], 8 > 0. Then,

lim[S,(x)—S5,(Vx )] =0.
H—yoo
As a consequence of Theorem 1A, the asymptotic behavior of S,(x) at point
x 1s the same as the behavior of the trigonometric series of @( ¥?) at the point
y = ~/x . Since the trigonometric expansion of any integrable function converges
to the function at every point at which the function is differentiable, we get:

Corollary. Let ¢ be a Lebesgue measurable function in [0, ), and let all
the integrals in (A.1) exist. Let (A.2) hold. Then,

lim S, (x) = ¢(x)

H—o0
at every differentiability point of ¢, where S,(x) is the nth partial sum of the
expansion of ¢ in the Laguerre series.

Appendix B

Let us now verify that g satisfies restrictions (A.1) and (A.2) of Theorem 1A
in Appendix A. The conditions (8), (9) and (11) will be employed.
First, observe that

L
2

1 oo
f|m(x)1f<x>dxs(j mQ(x)f(x)dx>“,
[¢] 0

which is finite due to (11).
Furthermore,

» 1 e +
[ tmiwn s e = (JxZf(x)dx>‘(Jomz(x)f(x)dx>‘ .

1

0 0

Clearly, using (8), we have
1

jlxéf(x)dx < Mf;xﬂldx + f(O)j x 2dx

0 0

= o 1/2 +2£(0) < oo,
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The integral in (A.2) does not exceed

et

It is clear that due to (9) we have nf:e'xx“mﬁf(x)dx —0as n — co,

Therefore,

Eg(x)— g(x)

at every point x > 0, at which both f and m are differentiable.
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