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A recursive kernel estimate Y7_, Y K((x—~ X )R/ K((x—X;)/h;) of a
regression m(x)=FE{Y|X=x} calculated from independent observations
(X, Y)y (X,, Y,) of a pair (X,Y) of random variables is examined. For
E| Y| < o0, the estimate is weakly pointwise consistent for almost all (4) xe R?, u is
the probability measure of X, if and only if 37_, h;’I{,,,N}/ZJ’.':l h}‘—» Oasn— oo, all
£>0, and 3*  hf=o0, d is the dimension of X. For E|Y|'**< o0, §>0, the
estimate is strongly pointwise consistent for almost all (u) xe R if and only if
the same conditions hold. For E|Y|'*?< 0, § >0, weak and strong consistency
are equivalent. Similar results are given for complete convergence.  © 1987 Academic

Press, Inc.

1. INTRODUCTION

Let (X,, Y)),.., (X,, Y,) be a sample of independent observations of a
pair (X, Y) of random variables of which X takes values in R“, while Y in
R. Let u be the probability measure of X. We examine the kernel estimate

ooy izt YiK(x—X;)/h;)
) = S R — X))
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of the regression m(x)= E{Y|X=x}, where {h, } is a sequence of positive
numbers and K is a non-negative Borel kernel. The estimate is a recursive
version of

S Y K((x— Xk
)= S K= X))

Devroye [3] showed that, for the window kernel, ie., for a kernel which
equals 1 or zero according as | x|| is smaller or greater than 1, respectively,
E|m(x)—m(x)|” >0 as n — oo, whenever E|Y|” < oo and p > 1. Krzyzak
and Pawlak [6] proved that the estimate is weakly and strongly consistent
for kernels having bounded support. In turn, kernels with unbounded sup-
port were applied by Greblicki er al. [5]. All of these authors examined
pointwise convergence of the estimate at almost all (1) x € R%

For the recursive estimate studied in this article, its weak and strong
consistency assuming the existence of a density of the measure u have been
investigated by Devroye and Wagner [4]. Distribution-free consistency of
the estimate s for kernels with bounded support and under some restric-
tive assumptions on sequence {h,} was shown by Krzyzak and Pawlak
[7]. In this article we apply kernels with bounded as well as unbounded
support and give conditions on {/,} which are both necessary and
sufficient in probability, almost sure and complete pointwise convergence
of the estimate to m(x) at almost all () xe R For the distribution-
free results concerning other regression estimates we refer to the paper of
Stone [9].

The estimate examined in this article is a function defined over
RYx (R*x R)", i.e., is of the following form: ri(x, X Yy X,, Y,), and for
convenience is denoted by #1(x). We examine its weak and strong pointwise
consistency at almost all (¢)xe R% So, e.g., weak pointwise consistency at
almost all (4) x e R in brief weak consistency a.e. (1), means that ri(x)
converges to m(x) in probability at almost all (1) xe R ie., on a subset of
R? which p measure equals 1.

Assuming E|Y| < co, we show that the estimate is weakly consistent a.e.
(p) if and only if

n d
lim z"=—‘f'i;-hf—€l=o alle>0 (1)
n - oo i=1 i
and
Y hi=oo. (2)

n=1

Let us observe that if a sequence {4, } satisfying (1) has a limit, it equals
zero. For E|Y|'*°<00,3>0, (1) and (2) constitute a condition which is
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both necessary and sufficient for strong consistency a.e. (u). Thus, for
E|Y|'t°< o0, >0, weak and strong consistency are equivalent. In turn,
for bounded Y, i.e., for | Y] <y < oo almost surely, the estimate converges to
m(x) completely a.e. (1) if and only if, in addition to (1),

Y exp(—a Y hf.’><oo all 2>0. (3)

n=1 i=1

2. LEMMAS

Throughout the article norms are either all 1, or all 1,. By §,(x) we
denote an open sphere with radius 4 centered at x € R%. For convenience,
we denote

sup K(x)=k. 4)

R4

We shall apply the following two lemmas:

LEMMA 1. Ler kernel K satisfy the condition

o H(lIx]) < K(x) < H([|x[),

¢, >0, where H is a non-negative and non-increasing Borel function defined
on the real half-line (0, co) with 0 < H(0+ ) < co. Let, moreover,

lim t“H(t)=0.

Then
. E{g(X)K((x—-X)/h)};
KXy 8) e

for any Borel function g such that E\g(X)| < co.

The lemma can be proved as Lemma 1 in Greblicki et al. [5]. The only
difference is that one should use H* (8) instead of H "!(3), where H*(3) is
the length of the interval {s: H(z)>4}.

Let us observe that conditions of Lemma 1 concerning the kernel imply

CI{HXH<r} SK(X)’ (5)

for some positive ¢ and r.
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LEMMA 2. Under conditions of Lemma 1 and (1),

7:1E{g(X) K((x—-X)/h,-)}:g(x) ae. (u).

A TS| ER((x— Xk

The proof of the lemma is deferred to Appendix.
We shall also use Corollary 10.50 in Wheeden and Zygmund [107] which
says that

a,(x) = h*/u(Si(x)) (6)

has a finite limit as 4 tends to zero a.e. (u).

3. WEAK CONSISTENCY

In this section we prove

THEOREM 1. Let E|Y| < 0. Let K satisfy all the conditions of Lemma 1.
If (1) and (2) hold, then

m(x) —m(x) as n— oo in probability a.e. (n), for all u and all m. (7)

Let, moreover,
fK(x)dx<oo. (8)

If (7) holds, then (1) and (2) are satisfied.

Proof of Theorem 1. We first show that (1) and (2) imply (7). It is clear
that mi(x)=A,(x)/B,(x), where

sk (SE)E (5T

i J

and

=3 K55 5 2 (57)

i=1

By virtue of Lemma 2,

lim EA,(x)=m(x) ae. (u) (10)
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In turn, we shall now verify that (2) implies

3 EK(x;X’): o ae (u) (11)

i=1 i

Using (5) and (6), we get

n x—X n n

> EK( p >>Cr" 2 (ha () Licoy + ep(S,(x) Y Tipneys  (12)
=1 i i=1 i=1

all £>0. On the other hand, by virtue of (6), for almost every (u) x e R%
there exist 0 >0 and ¢> 0 such that a,(x) <4, for 0 < h <e. Thus, for such
é and ¢, the quantity in (12) is underbounded by

n

(Crd/a) Z h;{I{h,<£}+C1u(Sr£(x)) Z I{/1,’2£}’

i=1 i=1

which, by virtue of (2), increases to infinity as » tends to infinity. Thus,
(11) holds.
In order to show that

A (x)—FEA,(x)->0 as n— oo in probability a.e. (u), (13)

it suffices to use (11), Chebyshev’s inequality, and classical truncation
argument.

From (10) and (13) it follows that 4,(x) — m(x) as »n — oo in probability
a.e. (u). Since convergence of B,(x) to 1 can be verified in the same way,
the first part of the theorem has been proved.

We shall now show that (7) implies (2) and (1). In order to prove the
first implication we assume that ¥ —m(X) is independent of X and boun-
ded with variance 1. Let ¢ have a density f which is constant on a sphere
S,(0) and zero outside. Let moreover, m(x)=0. Thus,

e -£{ 5 e (50 [ x(52) [
> {k(52)/ S k().

which converges to zero as n tends to infinity a.e. (u). By (4) and Jensen’s
inequality, the expectation in the above inequality is not smaller than

sk (S5 [ e+ 2 (57) ]
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Hence (11) is satisfied. Now (2) can be verified by a contradiction. If (2) is
not satisfied, 4, — 0 as n — oo, In turn, one can easily verify that, for the
assumed density,

im 1 [ k(X2 100 v =10 [ KO (14)

70 h

for all xe S,;(0). In this way we obtained a contradiction since (11) cannot
be satisfied. Therefore we have shown that (7) implies (2).

In order to complete the proof it suffices to prove that (7) and (2) imply
(1). Verifying this implication is, however, more arduous. Let us assume
that Y =m(X), p has a density which is constant on a sphere S,(0), a>0,
and zero outside and m(x) equals 1 on a sphere S,,(0) and 2 outside. We
have

_ 2 (m(X) —m(x)) K((x — X3)/hi) _gn(x)
=1 K((x— X))/h;) Sux)”

which converges to zero in probability as » tends to infinity a.e. (i), where

m(x)—m(x)

gi(x)= 3. (m(X)—m(x)) K (x;X')/ Y, EK (x;X>

i J

and

! J

Clearly Ef,(x)=1 and, by virtue of (11), var f,(x) — 0 as n = c0. One can
verify that sup, Eg2(x) <oco. From this and a result in Loéve [8, p. 166,
Corollary 2], it follows that Eg,(x)=V,(x)+ V,(x) converges to zero,
where

_2i-y JIm(y) f(p) —m(x) f(x)] K((x = y)/h,) dy

v,
(x) > K =)y f() dy
and
@ KG) dy
Vz(x)”m(x)[ 7% ‘1]
with

n

7= % 1K (GE) s 5 k.

=1
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Since both V,(x) and V,(x) are non-negative, it follows that

lim /,(x)=/(x) [ K(y)dy  ae. ()

n-— oo

We shall now show that this convergence implies (1). It is clear that there
exists 6 such that

0<j K(y)dy<j1<(y)dy.
il <o
Moreover, let us observe that, for the assumed density and all x e S,,(0),

w e [K(S2 ) mssw| Ko

h>2ald vl <é
and
x—
sup [k (*52) 100 v <10 [ K0
h<2a/d h
Hence,

. X7, k¢ Lip s 208y
1 <f| [ Koy ay- B lnzsn [ k().

for all xeS,,(0). The above inequality and convergence of f,(x) to
f(x)jK(y)dy, holding for all positive a, yield (1). The proof has been
completed.

4. STRONG CONSISTENCY

In this section we examine almost sure and complete convergence of the
estimate to m(x).

THEOREM 2. Let E|Y|'*° <0, §>0. Let K satisfy all the conditions of
Lemma 1. If (1) and (2) hold, then

m(x) — m(x) as n — co almost surely a.e. (u), for all p and all m. (16)

Let moreover, (8) be satisfied. If (16) holds, then (1) and (2) are satisfied.

From Theorems 1 and 2 we obtain the corollary which establishes the
equivalence of weak and strong consistency.
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COROLLARY. Let E|Y|'*° <0, 8>0. Let K satisfy appropriate con-
ditions of Lemma 1 and (8). Then

(a) weak consistency (7),

(b) strong consistency (16),

(¢) conditions (1) and (2)
are equivalent.

Proof of Theorem 2. In view of Theorem 1 it suffices to show that (1)
and (2) imply (16). Let 4,(x) and B,(x) be as in the proof of Theorem 1.
By virtue of theorem in Loeve [8, p.253], 4,(x) converges to zero as n
tends to infinity almost surely if

§ EUN K ((x = X)/h)
(20— EK((x— X)/k)1™?

n=1 i=1

(17)

In turn, by virtue of Lemma 1, for almost every (u) xe R? and for every
¢ >0, there exists # >0 such that

o (57} o (5)

is not greater than E{|Y|'*? |X=x} +¢, for 0 </ <n. On the other hand,
for h=#, the quantity is uniformly bounded for all positive A, a.e. (u).
Hence, (17) is satisfied, if

o
a"

112::1 [Z:}: 1 ai]l 0 =%

where a, = EK((x — X)/h,). This is, in turn, implied by (11); see, e.g., Barry
[1, p. 470]. Thus, 4,(x)— EA,(x) converges to zero almost surely a.e. (u).
Since similar arguments can be applied to B,(x), the proof has been com-
pleted.

In the next theorem without proof we give conditions for complete con-
vergence. Sufficient part of the theorem easily results from Bernstein’s
inequality, see Bennett [2], while necessity of conditions (1) and (3) from
Lemma 2 and Kolmogorov exponential inequality, see Loeve [8, p. 266].

THEOREM 3. Let |Y|<y< oo almost surely. Let K satify all the con-
ditions of Lemma 1. If (1) and (3) hold, then

mi(x) - m(x) as n— oo completely a.e. (u) for all y and all m.  (18)

Let, moreover, (8) be satisfied. If (18) holds, then (1) and (3) are satisfied.
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APPENDIX

Proof of Lemma 2. Clearly, for any ¢> 0,

o E{(g(X) —g(x)) K((x—X)/h)}
-1 EK((x — X)/h,) B

Wln(x) + WZn(x)’

where
W ()= Tt B0 —£00) K(Gx = X)/h)} Lo
" ", EK((x— X)/h,)
and
20 E{(g(X) —g(x)) K((x— X)/h)} I, <.
Warlx) = " EK((x— X)/h,) '
Obviously,
' Wln(x)| < (E|g(X)| + Ig(x)l ) kanﬁn(x)a
where

n

&%, = Z I(h,->s}/z hjd,
i=1 =1

which, by virtue of (1), converges to zero as » tends to infinity, all ¢>0,
and

J

Bx)= h;’/i EK(";X)
Using (5), we get
Bx)< Y h:-f/ et S [hYfar,(x)].
i=1 j=1

In turn, by virtue of (6), for almost every (u) x € RY, there exist y>0 and ¢,
such that 1/a,(x)>7y for O<h<g,. Thus, for 0<e<g,,

Bx)< 3. hs‘/ [r"cv S b L coy + (Snx) 3 IM,N}J
i=1 Jj=1 j=1

a.e. (u), which, by virtue of (1), approaches 1/¢y as n tends to infinity.
Finally, for 0 <e <g,,

W, (x)—-0 as n—o ae (u)
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On the other hand, by virtue of Lemma 1, for almost every (u) xe R and
every &> 0 there exists &, such that

E{(g(X)—g(x)) K((x— X)/h)}
EK((x— X)/h)

<4,

for 0 <h<e,. Hence,
[ Wan(x)] <,
for 0 < h<e,. Since § can be arbitrarily small,
W, (x)—0 as n—oo ae. (u)

The lemma has been proved.
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