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The following estimate of the pth derivative of a probability density function is 
examined: CfzO dkhk(x), where h, is the kth Hermite function and a ,̂ = ((-l)“/n) 
Cy=, hi’ is calculated from a sequence X, ,...,X, of independent random 
variables having the common unknown density. I f  the density has r derivatives the 
integrated square error converges to zero in the mean and almost completely as 
rapidly as O(n--) and O(nea logn), respectively, where a= 2(r-p)/(2r + 1). 
Rates for the uniform convergence both in the mean square and almost complete 
are also given. For any finite interval they are O(n-‘) and O(~Z-“~ log n), respec- 
tively, where B = (2(r -p) - 1)/(2r + 1). 0 1984 Academic ~rcsa, IIIC. 

1. INTRODUCTION 

Among a number of methods for estimating a density, the nearest 
neighbour, the kernel, the orthogonal series, the polynomial interpolation and 
the histogram ones seem to be most popular. In this paper we examine the 
estimate of a density and its derivatives using the orthogonal Hermite series. 
We estimate the density as in Schwartz [7] and Bleuez and Bosq [ 11, as well 
as in Walter [9], and suggest an estimate of derivatives of the density. For 
the estimate of the pth derivative, assuming that the density has r derivatives, 
we show that the mean integrated square error converges to zero as rapidly 
as O(nMa), where a = 2(r -p)/(2r + l), whereas the rate we obtain for the 
integrated square error is O(n-” log n) almost completely. We also study the 
uniform consistency in the mean square and almost complete and give the 
rates of the convergence. They are O(nP4) and O(nP4’* log n) a.c., respec- 
tively, where p = (2(r -p) - 1)/(2r + 1). Rates of the convergence of the 
mean integrated square error as well as the uniform convergence in the mean 
square given by us are better than those known in the literature. Concerning 
the a.c. convergence no similar results are known to the authors. 
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Let {hk}, k = 0, 1, 2 ,..., be the Hermite orthonormal system over the real 
line R, i.e., let 

where 

hk(x) = (2kk!d’2)-1’* Hk(x) cx2’*, 

Hk(X) = (-I)& eX2(dk/dxk) cx2 

is the kth Hermite polynomial. 
Let X, ,..., X, be a sequence of independent identically distributed random 

variables having the Lebesgue density J: For p > 0, let f’“’ E L, and let f’“’ 
(the p-th derivative off ) have the representation 

where 

f’“Y-4 - kg+o a,h,(x), 

Uk = jf’pyx) hk(X) dx = (-l)P j /zjp’(x)f(x) dx. 

The second equality holds if, e.g., f’“’ is bounded. This suggests the 
following estimate off’“‘(x): 

.&> = 5 a”, hk(Xh 
k=O 

where N depends on n and where 

a^, = (- 1)Pn-1 + @‘(Xi) 
i?l 

unbiasedly estimates uk. 
For p = 0, the estimate studied in this paper is the same as that examined 

by Schwartz [7], Walter [9] and Greblicki [3]. Walter [9] also estimated 
derivatives of the density, but as the estimate he took the appropriate 
derivative off,(x). Defining a new estimate of derivatives we manage to get 
better rates of the convergence. 

II. MEAN INTEGRATED SQUARE ERROR 

In this paper the quality of the estimate is measured by the integrated 
square error, i.e., with 

0 ( ,(x> -f'"'(X))' dx= kio (6k-uk)2 + kz$+, ':' (1) 
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Defining h-, = h,, we have 

h;(x) = W2>“’ hk-1@) - ((14 + W2)“2 hk+&), 

k = f 1, +2,..., and 

h;(x) = f “*he ,(x) 

(see Szegii [8, p. 1061). From this follows 

P 

hP’(X) = 2 a,pjhk+j(x), 
j=-p 

where 

lakpjl <Kp(Ikl +p)“** 

By (2), a^, can be rewritten in the form 

a^, = (-1)P n-’ 5 akpj i hk+j(X;). 
j=-p i=l 

THEOREM 1. Let f cp) EL,, p > 0. If 

NL co, 

then 

(2) 

(3) 

(4) 

(5) 

E I <f,(x) -f’“‘(x))’ dx -5 o. 

Pm-$ By (3), 

Vara^k<(Zp+ l)Ki(k+p)“n-‘E I,$‘, h:+j(X)/. 

Hence, by an inequality 

max ( hk(x)I < C(k + 1)-“12 
x 

(7) 

(8) 

(see Szegij [8, Theorem 8.91.3]), 
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Finally, 

k*. E(a ,̂ - Uk)’ = O(NP+s’6/n). 

Recalling (1) and (5) we complete the proof. 
The next theorem says how rapidly the mean integrated square error 

converges to zero. Let us introduce the following notation: 

t,(x) = (x - d/dx)’ f(x). 

THEOREM 2. Let f Q) E L,, r > p and t, E L,. Moreover, let 
E IX12’3 < co. If 

N - n*/(*r+ I f  
f  (9) 

then 

E j (A(x) -f’“‘(x))’ dx = O(n-*“-p”‘*‘+ ‘)). 

ProoJ: Let us observe that if E IXls’3 < 00, s > 0, 

E 1 hk(X)IS < c(k + 1)--s’4. 

This is implied by the two inequalities 

max 1 hk(x)I < C,(k + 1)-‘/4, 
1x1 <a 

(10) 

(11) 

for any nonnegative a, and 

max I~-“~h,(x)l < D,(k + 1)-r14, 
Ixl>a 

for any positive a. The inequalities are, in turn, implied by Theorem 8.91.3 
in Szegii [8]. 

BY (7) and (lo), 

2 E(a ,̂ - ak)* = O(W+ l/*/n). (12) 
k=O 

On the other hand, by virtue of Walter’s [9] result, 

fs 
k=?+ 1 

a; = ooy-P’ 
>* 

The theorem is now a consequence of (I), (9), (12) and (13). 

(13) 

683/15/2-3 
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The rate given by us is considerably better than O(n-‘6(r-p)-5)‘6r) 
reported by Walter [9]. For example, for p = 0 and I = 1, our O(K*‘~) is 
better than his O(n - “‘j). The rate in Theorem 2 is even better than 
O(n - (q-p) - I)/ZI 

13 
. i.e., that derived by Walter [9] for densities having 

bounded support. Hall’s [4] results are not comparable since he estimated 
densities on the half real line. 

III. INTEGRATED SQUARE ERROR 

In this section we examine the almost complete convergence of the 
integrated square error and study the rate of the convergence. The authors 
would like to mention that no result concerning the almost sure convergence 
of the error for the estimate is known to them. 

THEOREM 3. Let f Cp’ E L,. Zf, in addition to (5), 

a 
K‘ exp(-aNP+5’6/n) < co, 
El 

(14) 

for all positive a, then 

J 1 (&(x) -f’“‘(x))’ dx L 0 a.c. 

Remark 1. Condition (14) is satisfied if 

Np+‘16 log n/n 5 0. 

Now imposing some smoothness restrictions on the density and assuming 
an appropriate moment to exist, we give the rate of the convergence. For a 
sequence {Y,,} of random variables, we say that Y,, = O(a,) a.c. if 
p, Yn/an + 0 a.c. as n + co, for all sequences (/I,} convergent to zero. 

THEOREM 4. Let f’“’ E L,, p > 0. Let r > p, and let t, E L,. Let, 
moreover, E 1x1’ < 00, s > 8(r + 1)/3(2r + 1). Zf (9) is satisfzed, then 

I (&(x) -f’p’(~))2 dx = O(n-2(r-p)“2rt ‘) log n) a.c. 

Remark 2. The restriction in Theorem 4 concerning the existence of 
E 1x1” is fulfilled for s > 16/9 independently of r. 
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We shall now prove Theorem 4. The proof of Theorem 3 is omitted since 
it is similar. The only difference is that S, should be defined as 

Cf=o Cj”=-, (k + I.il + l)-1’6 a& and that (8) instead of (10) and 
Hoeffding’s [5] instead of Fuc and Nagaev’s inequality should be used. 

Proof of Theorem 4. By virtue of (9) and (13) it suffices to verify that, 
for all positive t and all sequences {/I,} convergent to zero, 

(15) 

where y, =p,,P/log n and a = 2(r -p)/(2r + 1). It is clear that the 
probability in (15) is not greater than 

Yk+j(Xi) 1 I ’ > t/Yn 

GP 1 $. j2, [a,,-’ $l yk+j(xi)] * > l/t2p + ‘)yn/ 3 (16) 

where Yk(Xi) = hk(Xi) - Ehk(Xi). In turn, the probability in (16) does not 
exceed 

’ Yk+j(xi) 

iY1 1 
’ > t ( k  + Ijl + ‘)-“‘/Y,(‘P + l>‘S, 3 

I 

(17) 

where, by (3), 

(k + Ijl + 1)-“2 aipj < c(N t 1)“+“2. (18) 

Applying Fuc and Nagaev’s inequality [2, Corollary 41 we find the 
probability in (17) dominated by A,, t B,,, where 

A kjn =C1Y, q’2n1-q(k + Ijl + 1)4’4 S,$E Jhk+j(X]q/tq’2 

and 

B,, = 2 exp{-c,tn/y,(k + ]j] + 1)1’2 S,Ek:+j(x)}, 
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c, and c2 positive and independent of 1, k andj, where q = 3s. Using (10) and 
(18), we get 

A,,= f’ 6 Ati,=O(n3, 
k:O j=tp 

wherey=(4r-2rq-q+6)/2(2rtl). Asy<-l,C,“=,A,<oo.Inorder 
to verify c,“, B, < co, where B, = ct=, cj”= --p Bkjn, it suffices to notice 
that, by (10) and (18), B,, < 2 exp(-c,tn log n/p”), c3 positive and 
independent of t, k and j. The proof has been completed. 

IV. UNIFORM CONVERGENCE 

Let f@ E t, n L, and let f (p) be of bounded variation on every finite 
interval. Hence, by virtue of equiconvergence Theorem 9.1.6 in Szego [8] 
and the Dirichlet-Jordan theorem on the convergence of the Fourier series, 
see Sansone [6], ciEo akhk(x)+fcP)( x as n -+ co uniformly on every finite ) 
interval. Therefore, an application of (11) leads to 

IpPtx) -f’p’(x)i < ) 2 (& - ak) hk(X) 1 + / 2 
k=O k=N+ I 

akhk(x) 1 

< [ go @k - ak)2 iO h:(x)] “2 + 1 ,f 
k=N+ 1 

akhk(x)l 

< 2C,(N + 1y4 (to @k - ffk)2) “2 

t c, f lUkl (k t 1)-“4 
k=N+I 

(19) 

on the interval [-a, a]. In order to estimate the second term in (19) we use 
the inequality u: < k-(r-P)b~+r-p derived by Walter [9] under the condition 
t,. E L,; b, is the kth coefficient of the expansion of t, in the Hermite series. 
Thus, the second term in (19) is upper bounded by 

cl f Ibk+r-pl (k t 1)-“-p”2-“4 
k=N+I 

co l/2 co 

< c2 
v (k + I)-(r-,+-1/2 1 -y 

k=N+ I k=N+l 

b: = o(jj-(‘-PV2+ l/4), 

where c, and c2 are some positive constants. 
The next theorem can now be verified by using tricks as in previous 

sections and will be given without proof. 
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THEOREM 5. Let fp’ E L, f7 L,, p > 0, and let fCp) be of bounded 
variation on finite intervals. Let r > p, and let t, E L,. Let, moreover, {N} be 
selected according to (9). Let E 1X(” < ao. Then, for s = 3, 

E{,;.I;~ Ijb(x) -f’“‘(x)]‘} = O(n-(*(‘-p)-‘)l(*r+*)), 

and, for s > 8(r + 1)/3(2r + l), 

sup jjlp(x) -f (p)(x)( = O(n-‘2”-p’-‘)‘2(2r+ ‘) log n) 
1xl<a 

a.c. 

The uniform almost sure convergence of densities has been studied by 
Bleuez and Bosq [ 11. As far as the rate for the almost sure convergence, the 
result given by us is better than Walter’s [lo] O(n-“‘-p’-3’4”2’r’3)). For 
example, for p = 0 and r = 1, his O(n-L’32) is worse than our O(n-“6 log n). 

V. MULTIDIMENSIONAL GENERALIZATION 

Schwartz [7] has observed that generalization results concerning 
orthogonal series estimates on higher dimensions are easy. Denoting by d the 
dimension of X and recognizing k in the definition of the definition of the 
estimate as a d-vector index one can verify that, e.g., Theorem 1 remains 
valid if (6) is replaced by 

N’P+5/6Jd/n -r, 0. 
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