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Summary 

Let (X,  Y~), (X2, Y2), '" be independent pairs of random variables 
according to the model Y~=t~(Xn)R(X~)+Z~, n=l, 2 , . . . ,  where t~ and 
R are unknown functions. Z~'s are i.i.d, random variables with zero 
mean and finite variance. The marginal density of X~ is independent 
of n. In the paper nonparametric estimates of a nonstationary regres- 
sion function E [Y~[ X~=x} =t~(x)R(x) are proposed and their asymptotic 
properties are investigated. 

1. Introduction 

Let (2(i, Y1), (X,, Y2),"" be a sequence of independent pairs of ran- 
dom variables according to the model 

(i) Y . = R . ( X . ) + Z .  , n = l ,  2,... , 

where R~'s are Borel-measurable functions and Z~'s are i.i.d, random 
variables. Z. is independent of 2/, and 

( 2 )  EZ~=O, E Z ~ < o o .  

Y~ takes values in R, while Xn in 2", where 2~ is a Borel subset of 
R p. The marginal Lebesgue density f of X~ is independent of n. Our 
aim is to estimate the nonstationary regression function i.e. to track 
R~(x)=E [Y~[X~=x}. 

In stationary case several nonparametric methods have been pro- 
posed. We mention works of Nadaraya [13], Rosenblatt [15], Noda [14], 
Collomb [4], Greblicki and Krzy~ak [10] as well as Devroye and Wagner 
[6] based on the Rosenblatt-Parzen density estimate. The nearest neigh- 
bor estimate is represented by Stone [18] and Devroye [5]. The orthog- 
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onal series approach has been discussed by Mirzahmedov and Ha~imov 
[12] and Greblicki [9]. 

The nex t  section consists of assumptions and preliminaries. The 
main results  of  the  paper i.e. Theorems 1 and 2 are  given in Sections 
3 and 4. Concluding Theorems 3 and 4 are  in Section 5. In the  clos- 
ing section an example is considered in which restr ict ions made in this 
paper are  satisfied even if the  regression function converges to infinity 
as n tends to infinity. 

2. Preliminaries and assumptions 

Throughout  this paper we assume tha t  

( 3 ) R , (x )=t , (x )R(x) .  

A sequence of functions {t~} is unknown. It,  however,  becomes similar 
to some sequence of numbers ;  more precisely, the re  exists a sequence 
{c,} such tha t  

( 4 ) sup lt.(x)-c.l~O. 
X 

F u r t h e r  assumptions imposed on {t,} will be given in the  sequel. The 
functional form of R is completely unknown. 

All integrals  and supremums are taken over :~'. Besides, K1, Ks, 
�9 . .  denote positive constants numbered in order  of appearance. 

F u r t h e r m o r e  we assume tha t  

(5) 

which implies 

f R2(x)f(x)dx < oo , 

( 6 ) 1 [R(x)]f(x)dx<oo g 

Note t h a t  f rom (1)-(5) it follows tha t  

( 7 ) E Y2~_KI+K2c~. 

In the  nex t  par ts  of the  paper we re fe r  (7) r a the r  than  (1)-(5). 
We also introduce the  following notat ions:  

h,(x) = R , ( x ) f ( x ) ,  h(x) = R ( x ) f ( x ) .  

We shall use a complete orthonormal sys tem {gj}, j = 0 ,  1 , . . . ,  de- 
fined on .~ ,  such t h a t  

( 8 ) lgj(z)l'<Gj 
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for all x e ~ ,  where {GJ is a sequence of numbers. 
From (4), (6) and (8) it follows that  functions ha can be expanded 

in the orthogonal series 

(9)  

It  means that  

(10) 

ha(x)'~ "5], ajag~(x) �9 
3=0 

ata= i Ra(x)gj(x)f(x)dx=E [Y~g,(Xa)} �9 

In Section 5 unknown coefficients aja's are estimated by the Robbins- 
Monro stochastic approximation method, see e.g. Wasan [21], i.e. 

(ii) Ya+Igj(Xa+ )), 

where &jo:O for all i ,  and {ra} is a sequence of positive numbers. 
Let us expand f in the orthogonal series 

r  

(12) f (x) - -  ~, bjgj(x) , 
J=O 

where 

(13) b j :  I gj(x)f(x)dx=E gj(X~) q 

J 

Clearly 

(14) 
i=l 

is an unbiased estimator of bj. 
As an estimator of Ra we take the statistics 

(15) i t ( x ) = h a ( x ) / A ( x )  , 

where 
N(n) ^ 

(16) h~(x) = 2] a t~qj ( ) ,  
J=o 

^ ~(n)  ^ 

(17) fa(x) = ~, b~q~(~) , 
J=0 

and where {N(n)} and {M(n)} are sequences of integers. 
I t  should be mentioned that  estimator (17) of a density function 

was proposed by Cencov [2] and studied by Schwartz [17], Kronmal 
and Tarter [11] and Bosq [1] among others. For ra=l/(n+l) ,  ~ja is 

equal to n -1 ~ Y~gj(X~) and estimate (15) becomes that  of studied by 
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Greblicki [9] for the stationary case. 
In the paper we investigate asymptotic properties of (15), i.e. we 

show that,  under suitable conditions, 

I ~ . ( x ) - R . ( x ) [ ~ O  

in probability a n d  with probability one. 
In order to prove convergence theorems we expand h in the orthog- 

onal series 

h(x).-. ~, ajg3(x ) , 
J = O  

(18) 

where 

(19) 

Finally, we define 

at = f R(x)g~(x)f(x)dx . 

(20) d ,=  sup E (&~,-aj,) ~ 

where NI and Nz run over the set of all integers. In Section 5 it will 
be shown tha t  {d.} is bounded by a power sequence convergent to zero. 

Herein we use the following two lemmas: 

LEMMA A (Chung [3]). Let p~, P2,"" be real numbers  such that f o r  
n ~ o  

p~+l_~(1-c/n~)p,+c'/n', 

where 0 < ~ < 1 ,  c>0,  c '>0,  t real. Then 

lim sup nt-~p,~_c'/c . 
. ~ o o  

LEMMA ]~ (Van Ryzin [20]). Let {A,} and {B,} be two sequences o f  
random variables on a probability space (9, F, P). Let  {F,} be a se- 
quence o f  Borel fields such that F = c F , + , c F ,  and let A ,  and B ,  be meas- 
urable wi th  respect to F~. I f  A,>=O a.e., E A~ is finite,  and 

E {A,+, IF.} < A , + B ,  a.e., 

~. E ]S , l<oo ,  
7 t = l  

converges almost surely to a f ini te l imi t  as n tends to in-  then {A,} 
f in i ty .  

3. Convergence in probability 

First we state and prove two ]emmas. 
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LEMMA 1. I f  (6) is satisfied and 

N(n) 
(21) d'~/2 ~ V~ L 0 ,  

2=0 

N(n) 

(22) sup ft.(x)-- c. I ~, G} 2L 0 ,  
X 3 =0  

then 
A 2 n (23) E (h.(x)-h.(x)) - -0  

at every point x ~ 2C at which 

PROOF. Observe 

(24) 
FN(n) ] 

c.[ o a, LO.  

^ N(n) 
(25) h~(x)--h~(x)=N~, ) (at.-aj.)g~(x)+ E (aj~-cnaj)g~(x) 

j=o 3=0 

By Cauchy's inequality, the expectation of the squared first term on 
the right-hand side in (25) is not greater than 

N(n) N(n) FN(n) "] 2 

E Z ~ . 
3=0 3=0 

(26) 

Since 

[aj.-c.a~l= l f (t.(x)-c~)R(x)g2(x)f(x)dx 

~Gj sup It.(x)-c.I t IR(x)lf(x)dx , 
:c J 

the absolute value of the second term in (25) does not exceed 

N(n) f (27) (sup]t~(x)--c~l) E G} ]R(x)lf(x)dx. 
z j=O 

Moreover, the absolute value of the fourth term in (25)is majorized by 

(28) IR(x)] f(x)  sup lt.(x)--c.[ . 

In view of (25), (26), (27) and (28) the proof is complete. 

LEMMA 2. I f  

C n n - l / 2  " ~ )  2 n Gj--0 , 
2=0 

then 
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c~ E ( / ~ ( x ) - f ( x ) y L O  

at every point x ~ 2~, at which 

r M(n) 1 b,g,(x)-- f ( x )  ~-LO . 

PROOF. Obviously 

^ M(n) ^ F~M(a) 7 
(29) f , (x ) - -  f ( x ) =  37, (bja--bj)gj(x)+ k ~  b jg j (x) -  f (x ) j  . 

j=O 

Since E (b~a-bj)~G~/n, the expectation of the squared first term in 
(29) is not greater than 

M(n) ^ M(n) FM(n)  7 2 

E N ~ 3=0 

which completes the proof. 

Combining Lemmas 1 and 2, we get the main result of this section. 

THEOREM 1. Let (6), (21) and (22) be satisfied. Let, moreover, 

( lcal+l)n -~/~ ~'~,) G]LO. 
j=o 

(30) 

Then 

Ik=(x)-R=(x)l~O 
in probability at every point x ~ 2~ at which f (x)>0 ,  (24) holds and 

(31) (Ic.J+ 1 ) [ ~  bjg~(x)--f(x)] L O .  

PROOF. The result follows from the equality 

(32) Ra(x) - Ra(x) -- (ha(x) - h,(x))]/~(x) 

+ha(x)( f (x)- /a(x)) / f (x) /a(x)  . 

. 

LEMMA 3. 
thermore, let 

(33) 

and let 

Almost sure convergence 

As in the previous section we start  with two ]emmas. 

Assume that conditions of  Lemma I are satisfied. 

rN(n) 7 
2 2 2 r~(l +c~)| p,  GH < ~ , 

n=L L j=o  J 

F u r -  
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VN(n) ~12 (34) ~=1~ ~ v ;  

N(n) N(n+l)  

(35) ~ , d ~ Z  G~ Z G~.<co. 
n=l 3 =0 k=N(n) 

Then 

(36) ^ Ih~(x)-h~(x)l-*O 

wi th  probability one, at every point x ~ 2C at which (24) holds. 

PROOF. By (25), (27) and (28) it suffices to show that  

N(n) N(n) N(n) 

(37) ~, (&j~--aj~)g~(x)= E (&j~--E &j~)g~(x)+ ~, (E &~--aj~)g~(x) 
J=O 3=0 3=0 

converges to zero with probability one as n tends to infinity. Now we 
are concerned with the second term in (37). The absolute value of the 
term does not exceed 

2"] t/~ 

By making use of Lemma B we prove the convergence of the first 
term in (37). Denote 

N(n) 
V~(x)= E (aj~-E ~j~)gj(x) . 

3=0 

Observe 

where 

N(n+l) 

u~(x)=r~ 5-I, 
j=O 

w~(x)=(i-r.) 

V~§ = V~(x) + u~(x) + w~(x) , 

Thus, 

where 

[Y~+lg~(X~+~)-E (Y~+lg~(X~+l))]gj(x) , 

N(n+l)  N(n) 

~, ( g ~ - E  &j~)gj(x)--r~ ~, (aj~--E aj~)g,(x). 
. /=N(n)+l J=0 

E (V2+I(x)[XI, YI, X2, Y2,'" ", X~, Y~)=V:(x)--bB~(x), 

B~(x) = E u~(x) + w~(x) + 2V~(x)w~(x) . 

Now it will be verified that  ~, E I B~(x)[<co for every x ~ 2C. 
n=l 

Cauchy's inequality and (7) we obtain 

By 
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(39) 
N(n+l) N(n+l) 

E u~(x)<=r~ ~ var[Y~+lgj(X~+~)] ~ G~ 
J=O j=O 

FN(n+i) 72 FN(n+l) 7 2 
Nr~ E Y,~+~/ E G,/=r.(g,+K~c.+,)| :2 Gi 

L j:o J L #=o 

Using Cauchy's inequality again we" get 

N(n+ i) .5"(n + i ) 
w~(x)<_2(1--r.) 2 ~, (hj=-Ea~.) 2 ~, G~. 

y=-'v(n) ./=~-(n) 

N(n+l) N(n+l) 
+2r~ N (a~-E&~,) 2 5-I, G~. 

3:0 J=O 

Therefore 

(40) E w~(x)<2(1--r.)2d. VN(~, ') 12 r~( .+ , )  l~  
LJ:N(n) "= 

In turn 

[V~(x)w,(x,)[Kr.[~ (6.j.--E &j.)gj(x)] 2 

N ( n )  W ( n  + 1 ) 
q- (1--r.) Z (&t.--. E a~,,)g~(x) ~:~(.) (&~..--E aj,,)gj(x) . 

j : o  

Applying Schwartz's and Cauchy's inequalities one gets 

N(n) . .  N(n) 
^ 9. 2 (41) E IV.(x)w~(x)i~_r. E E (aj,,--a~.) 3-I, Gj 

1=0 J=O 

FN(n) N(n) 

+t l - r . l L~  ~ E (a~.-a,.y .o~' ~ 
N(n+l)  N(n+l)  2"tl/2 

j:~Y(n) 

FN(n) 272 N(n) N(n+l)  

<r.d.L  ~ G~] + l l - r " [ d "  3-I'~=o VJ ~:~w,)Sl' G]. 

In view of assumptions (33), (34) and (35), inequalities (39), (40) 

and (41) imply that  ~, E [B,(x)[ is finite for every x ~ .~. Consequently 
n=I 

V~(x) converges to a finite limit almost surely as n tends to infinity. 
By Lemma 1 the limit is zero. The proof has been completed. 

LEMMA 4. I f  

(42) Z n-2c~| ~ G~] <co , 
n=l  LJ=O 

then 

(43) e.lf.(x)--f(x)l----0A . 
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with  probability one at every point at which (31) holds. 

PROOF. By virtue of Lemma 2 it suffices to show that  

^ n ~ ( n )  

G(d~(x)--E fdx) )=Gn- '  Z ~, (gj(X~)--E gj(X~))gj(x) 
~ 1  J=O 

converges to zero with probability one as n tends to infinity. Let 

Obviously 

X(n) 
~(x )=G ~] (gj(X~)-E gj(X,~))g~(x) . 

.i=0 

M(n) M(n) [-M(n) 7 2 
E ~dx)<c~ ~ var gj(X~) Z g~(x)<c,~ G 

d = 0  y = 0  = 

By virtue of the Kolmogorov strong law of large numbers (see Doob 
[7], p. 127) and (42), the proof is complete. 

Finally we are able to establish the strong consistency of (15). 

THEOREM 2. Let (6), (33), (34) and (35) be satisfied. Let, moreover, 

n = l  ,~l(n) ~ 2 (44) 

Then 
^ 

I R d x ) - R ~ ( x ) l ~ O  

w.p.  I at every point x ~ 2s at which f ( x )>O,  (24) and (31) hold. 

5. The rate of the convergence of {d~} 

Here we show that  the sequence {d.} defined by (20) converges to 
zero and is bounded by a power sequence. While proving Theorem 3 
we use arguments similar to those used in Dupa5 [8]. 

THEOREM 3. 

(45) 

(46) 

(47) 

where q+ = m a x  (0, q). 

(48) 

where 

Let conditions (6) and (7) be satisfied and let 

~'~=Sn -*, 3~0,  0 ~ r ~ l ,  

sup ]t.+,(x)- t.(x)]= O(n-p) , r < p ,  

G =O(n q) , 2q+ ( r , 

Then 

d~ =O(n-9 , 
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s----- ~ 2(p--r) for  r~2(p+q§ 

r - -  2q + otherwise. 

PROOF. To begin with, let us observe that  

(49) E [Y.+~g~(X.+l)[as~,-", (~s.] =aj,.+t . 

By (7), (8) and (47), 

(50) var [ Y . + i g A X . + O [ a j . .  . ., aj.] ~_ Gi(K~+ K 3 # 9  . 

From (3), (6), (8), (10) and (46) it follows that  

(51) la~,.+~-aj.l~_G~ sup It.+l(x)-t.(x)l f IR(x)lf(z)dx<K4G~n-P" 

Subtracting aj,.+~ on both sides of (11) we get 

a j , .+~-%.+~=(1- r3 (a~ . -a j3 - r . ( a j , .+ , -Y .+ lgAX.+ l ) )  

- ( 1 - v 2 ( % . + 1 - a ~ 0  �9 

Now after squaring and taking conditional expectations, using (49), (50) 
and (51) we obtain 

(52) E { ( ~ j , . + t - % , , + 0 2 1  ~j~, . .  . ,  dj,,} 

< ( 1 - r.) (h~.-  as.) ~ + K4G~n -p 16,s . -  a~. I 

+ G] (K,r~ + K,r~.n '~ + Ksn -2~) , 

for sufficiently large n satisfying I I - r . l < l .  It  is clear that  for every 
. >0  and every random variable Z with finite variance 

2 E [ Z ] < r  E Z  ~. 

Thus, choosing ~=K6GT~r.n p (for some small /s one gets 

(53) 2Gjn -p E 16,j~-aj.]~_K.-1G~r;tn-2p+K.r. E (&3.--aj.) 2 . 

Now taking unconditional expectation on both sides of (52) and using 
(53) one obtains 

E (&j,.+t--aj,.+O2~(1--KTn-O E (~j.--aj.) ~ 

+ G~(K,n -2" + K , #  (q-')+K~on ~-~) 

for sufficiently large n. Thus, 

(54) E (&~ .+~--a~ .+0~(1- -K~n-0  E ~& a ~2~ K G~n -('+') , , _ _  ~ ,  J n - -  i n /  T 11 .1 " 

Hence 

d.+~_(l - -  KTn-Od.+ Kttn -`~+', . 
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Since ~jo=O, d~ is finite. A straightforward application of Lemma A 
completes the proof. 

From Theorems 1, 2 and 3 one easily gets the next two concluding 
ones.  

THEOREM 4. Let (6), (7) and (22) hold. 
and (47) be satisfied. I f  

M(n)  2 n 
(55) n C~+-~n) ~, Gj-*O , 

3 = 0  

~r 

(56) n E 0 ,  
j=O 

then 
^ 

IR.(x)-R.(x)[--O 

Let, moreover, (45), (46) 

in  probability at every x ~ 2~ at which f (x)>0,  

(57) ~ ajgj(x)--h(x)=o(n -q) 
J = 0  

and 

M(n) 
(58) ~ bjg~(x)-- f(x)=o(n-q+) . 

THEOREM 5. Let (6), (7) and (22) be satisfied. 
(46), (47) and (56) be fulfilled. I f  

(59) 

and 

(60) 

then 

. FM(n) 212 
n=l L .,'=o 

Let, moreover, (45), 

n=l L./=O J 

A n 

]R,(x)-R,(x)l---0 

almost surely at every x e2C at which f (x)>O and both (57) and (58) 
hold. 

PROOF. Verifying that  (33) is implied by (60), (35) is implied by 
(56) and (60), one can easily complete the proof. 
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6. Examples 

The following examples illustrate the fact tha t  conclusions of Theo- 
rems 4 and 5 are valid even if R~ tends to infinity as n--*r 

Let  

where 

sup ]p(x)]< co , 

and let q be unknown despite the  fact tha t  O<q~Q, where Q is a 
known number.  Now c~=n q. One can select r ,=$n  -2/3 and sequences 
{N(n)} and [M(n)} of types {n ~} and {n~}, respectively, where a and 
fl are positive numbers.  This choice is decided by examples given be- 
low. In this case (46) and (48) hold with p = l - - q  and s=(2-6q) /3 .  

We shall consider two examples of applicable orthogonal systems. 

Hermite orthogonal system 

If  2~ is a real line, we can use a system 

g j(x) = (2Jj!u m) -VZe-~2nHr , 

where 

H0(x)= l ,  Hj(x)=(-1)Je;(d~e-~"/dx~), j = l ,  2 , . . .  

are Hermite  polynomials. I t  can be found in Szeg5 ([19], p. 242) tha t  

Suppose tha t  series (12) and (18) converge at a point x to f ( x )  and 
h(x), respectively. Various conditions for the  pointwise convergence 
of orthogonal expansions with the  Hermite system can be found in 
Sansone [16]. Nevertheless,  we mention here tha t  the  series under  con- 
sideration converge to f ( x )  and h(x) at every differentiability point of 
f and h, respectively. 

One can verify tha t  conditions (22), (55) and (56) of Theorem 4 
imposed on sequences IN(n)} and {M(n)} are satisfied for a< (2 -6Q) /5  
and /~<(3-6Q)/5. In turn,  restrictions (22), (59) and (60) of Theorem 
5 are fulfilled for a<(1-6Q)/5  and ~<(3-6Q)/5 .  

We are now interested in assumption (57). Let  us assume tha t  
the function 

~(x) = e~"/2dm(e-'~/2h(x))/dx "~ 

exists and is square integrable. By Schwartz 's  [17] result 

]a: I~K~3(2j) -'~/2 , 
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where K~ is the  L2 norm of {. 
series in (18) converges to h(z), 

Hence, at  every point �9 at which the 

~__g,, ~, j - e~+ l l 6 ' i Z~K ls~ -e~ -n l6 '< ' i 2  , 
8=N(n)+l 

which leads to a>12Q/(6m-11). Similar result  can be given for (58). 

Legendre orthogonal system 
If  : ~ ' = [ - 1 ,  1] we can apply the  Legendre system 

where 

gj(x) =( j+ 1]2)w~P3(x) , 

P0(x)=l ,  Pt(x)=(2Jj!)-'[dS(x~-l)S/dxS], j = l ,  2 , . . .  

are Legendre polynomials. In this case Gs=K16j in (see Szeg5 ([19], p. 
164)). 

Criterion for the pointwise convergence of series (12) and (18) are 
given in Sansone [16]. In particular, the series converge to f(x) and 
h(x) at every point at which f and h satisfy the Lipschitz condition of 
a positive order. 

By Jackson's theorem, see Sansone ([16], p. 206), if h is of bounded 
variation, 

at every x in the  interior of ~ .  In this case, (57) is satisfied for a >  
Q. Similar result  is t rue  for (58). 

The order restrictions of Theorems 4 and 5 are satisfied for a <  
(1-3Q)/6, #<(1 -2Q) /4  and a<(1-6Q)/12, #<(1-2Q)/4 ,  respectively. 
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