# AN ORTHOGONAL SERIES ESTIMATE OF TIME-VARYING REGRESSION 

Whodzimierz Greblicki, Danijta Rutkowska and Leszek Rutkowski

(Received July 7, 1980; revised Mar. 19, 1982)

## Summary

Let $\left(X_{1}, Y_{1}\right),\left(X_{2}, Y_{2}\right), \cdots$ be independent pairs of random variables according to the model $Y_{n}=t_{n}\left(X_{n}\right) R\left(X_{n}\right)+Z_{n}, n=1,2, \cdots$, where $t_{n}$ and $R$ are unknown functions. $Z_{n}$ 's are i.i.d. random variables with zero mean and finite variance. The marginal density of $X_{n}$ is independent of $n$. In the paper nonparametric estimates of a nonstationary regression function $\mathrm{E}\left\{Y_{n} \mid X_{n}=x\right\}=t_{n}(x) R(x)$ are proposed and their asymptotic properties are investigated.

## 1. Introduction

Let $\left(X_{1}, Y_{1}\right),\left(X_{2}, Y_{2}\right), \cdots$ be a sequence of independent pairs of random variables according to the model

$$
\begin{equation*}
Y_{n}=R_{n}\left(X_{n}\right)+Z_{n}, \quad n=1,2, \cdots, \tag{1}
\end{equation*}
$$

where $R_{n}$ 's are Borel-measurable functions and $Z_{n}$ 's are i.i.d. random variables. $Z_{n}$ is independent of $X_{n}$ and

$$
\begin{equation*}
\mathrm{E} Z_{n}=0, \quad \mathrm{E} Z_{n}^{2}<\infty . \tag{2}
\end{equation*}
$$

$Y_{n}$ takes values in $R$, while $X_{n}$ in $\mathscr{X}$, where $\mathscr{X}$ is a Borel subset of $R^{p}$. The marginal Lebesgue density $f$ of $X_{n}$ is independent of $n$. Our aim is to estimate the nonstationary regression function i.e. to track $R_{n}(x)=\mathrm{E}\left\{Y_{n} \mid X_{n}=x\right\}$.

In stationary case several nonparametric methods have been proposed. We mention works of Nadaraya [13], Rosenblatt [15], Noda [14], Collomb [4], Greblicki and Krzyżak [10] as well as Devroye and Wagner [6] based on the Rosenblatt-Parzen density estimate. The nearest neighbor estimate is represented by Stone [18] and Devroye [5]. The orthog-

[^0]onal series approach has been discussed by Mirzahmedov and Has̆imov [12] and Greblicki [9].

The next section consists of assumptions and preliminaries. The main results of the paper i.e. Theorems 1 and 2 are given in Sections 3 and 4. Concluding Theorems 3 and 4 are in Section 5. In the closing section an example is considered in which restrictions made in this paper are satisfied even if the regression function converges to infinity as $n$ tends to infinity.
2. Preliminaries and assumptions

Throughout this paper we assume that

$$
\begin{equation*}
R_{n}(x)=t_{n}(x) R(x) . \tag{3}
\end{equation*}
$$

A sequence of functions $\left\{t_{n}\right\}$ is unknown. It, however, becomes similar to some sequence of numbers; more precisely, there exists a sequence $\left\{c_{n}\right\}$ such that

$$
\begin{equation*}
\sup _{x}\left|t_{n}(x)-c_{n}\right| \xrightarrow{n} 0 . \tag{4}
\end{equation*}
$$

Further assumptions imposed on $\left\{t_{n}\right\}$ will be given in the sequel. The functional form of $R$ is completely unknown.

All integrals and supremums are taken over $\mathcal{X}$. Besides, $K_{1}, K_{2}$,
... denote positive constants numbered in order of appearance.
Furthermore we assume that

$$
\begin{equation*}
\int R^{2}(x) f(x) d x<\infty \tag{5}
\end{equation*}
$$

which implies

$$
\begin{equation*}
\int|R(x)| f(x) d x<\infty \tag{6}
\end{equation*}
$$

Note that from (1)-(5) it follows that

$$
\begin{equation*}
\mathrm{E} Y_{n}^{2} \leqq K_{1}+K_{2} c_{n}^{2} \tag{7}
\end{equation*}
$$

In the next parts of the paper we refer (7) rather than (1)-(5).
We also introduce the following notations:

$$
h_{n}(x)=R_{n}(x) f(x), \quad h(x)=R(x) f(x) .
$$

We shall use a complete orthonormal system $\left\{g_{j}\right\}, j=0,1, \cdots$, defined on $\mathscr{X}$, such that

$$
\begin{equation*}
\left|g_{j}(x)\right| \leqq G_{j} \tag{8}
\end{equation*}
$$

for all $x \in \mathscr{X}$, where $\left\{G_{j}\right\}$ is a sequence of numbers.
From (4), (6) and (8) it follows that functions $h_{n}$ can be expanded in the orthogonal series

$$
\begin{equation*}
h_{n}(x) \sim \sum_{j=0}^{\infty} a_{j n} g_{j}(x) \tag{9}
\end{equation*}
$$

It means that

$$
\begin{equation*}
a_{j n}=\int R_{n}(x) g_{j}(x) f(x) d x=\mathrm{E}\left\{Y_{n} g_{j}\left(X_{n}\right)\right\} \tag{10}
\end{equation*}
$$

In Section 5 unknown coefficients $a_{j n}$ 's are estimated by the RobbinsMonro stochastic approximation method, see e.g. Wasan [21], i.e.

$$
\begin{equation*}
\hat{a}_{j, n+1}=\hat{\alpha}_{j n}-\gamma_{n}\left(\hat{a}_{j n}-Y_{n+1} g_{j}\left(X_{n+1}\right)\right), \tag{11}
\end{equation*}
$$

where $\hat{a}_{j 0}=0$ for all $j$, and $\left\{\gamma_{n}\right\}$ is a sequence of positive numbers.
Let us expand $f$ in the orthogonal series

$$
\begin{equation*}
f(x) \sim \sum_{j=0}^{\infty} b_{j} g_{j}(x), \tag{12}
\end{equation*}
$$

where

$$
\begin{equation*}
b_{j}=\int g_{j}(x) f(x) d x=\mathrm{E} g_{j}\left(X_{1}\right) \tag{13}
\end{equation*}
$$

Clearly

$$
\begin{equation*}
\hat{b}_{j n}=n^{-1} \sum_{i=1}^{n} g_{j}\left(X_{i}\right) \tag{14}
\end{equation*}
$$

is an unbiased estimator of $b_{j}$.
As an estimator of $R_{n}$ we take the statistics

$$
\begin{equation*}
\hat{R}_{n}(x)=\hat{h}_{n}(x) / \hat{f}_{n}(x), \tag{15}
\end{equation*}
$$

where

$$
\begin{align*}
& \hat{h}_{n}(x)=\sum_{j=0}^{N(n)} \hat{a}_{j n} g_{j}(x),  \tag{16}\\
& \hat{f}_{n}(x)=\sum_{j=0}^{M(n)} \hat{b}_{j n} g_{j}(x), \tag{17}
\end{align*}
$$

and where $\{N(n)\}$ and $\{M(n)\}$ are sequences of integers.
It should be mentioned that estimator (17) of a density function was proposed by Čencov [2] and studied by Schwartz [17], Kronmal and Tarter [11] and Bosq [1] among others. For $\gamma_{n}=1 /(n+1)$, $\hat{a}_{j n}$ is equal to $n^{-1} \sum_{i=1}^{n} Y_{i} g_{j}\left(X_{i}\right)$ and estimate (15) becomes that of studied by

Greblicki [9] for the stationary case.
In the paper we investigate asymptotic properties of (15), i.e. we show that, under suitable conditions,

$$
\left|\hat{R}_{n}(x)-R_{n}(x)\right| \xrightarrow{n} 0
$$

in probability and with probability one.
In order to prove convergence theorems we expand $h$ in the orthogonal series

$$
\begin{equation*}
h(x) \sim \sum_{j=0}^{\infty} a_{j} g_{j}(x), \tag{18}
\end{equation*}
$$

where

$$
\begin{equation*}
a_{j}=\int R(x) g_{j}(x) f(x) d x \tag{19}
\end{equation*}
$$

Finally, we define

$$
\begin{equation*}
d_{n}=\sup _{N_{1}, N_{2}}\left\{\sum_{j=N_{1}}^{N_{2}} \mathrm{E}\left(\hat{a}_{j_{n}}-a_{j_{n}}\right)^{2} \sum_{j=N_{1}}^{N_{2}} G_{j}^{2}\right\}, \tag{20}
\end{equation*}
$$

where $N_{1}$ and $N_{2}$ run over the set of all integers. In Section 5 it will be shown that $\left\{d_{n}\right\}$ is bounded by a power sequence convergent to zero.

Herein we use the following two lemmas:
Lemma A (Chung [3]). Let $p_{1}, p_{2}, \cdots$ be real numbers such that for $n \geqq n_{0}$

$$
p_{n+1} \leqq\left(1-c / n^{*}\right) p_{n}+c^{\prime} / n^{t},
$$

where $0<\omega<1, c>0, c^{\prime}>0, t$ real. Then

$$
\lim _{n \rightarrow \infty} \sup n^{t-\alpha} p_{n} \leqq c^{\prime} / c .
$$

Lemma B (Van Ryzin [20]). Let $\left\{A_{n}\right\}$ and $\left\{B_{n}\right\}$ be two sequences of random variables on a probability space ( $\Omega, F, P$ ). Let $\left\{F_{n}\right\}$ be a sequence of Borel fields such that $F_{n} \subset F_{n+1} \subset F$, and let $A_{n}$ and $B_{n}$ be measurable with respect to $F_{n}$. If $A_{n} \geqq 0$ a.e., $\mathrm{E} A_{1}$ is finite, and

$$
\begin{aligned}
& \mathrm{E}\left\{A_{n+1} \mid F_{n}\right\} \leqq A_{n}+B_{n} \quad \text { a.e. }, \\
& \sum_{n=1}^{\infty} \mathrm{E}\left|B_{n}\right|<\infty,
\end{aligned}
$$

then $\left\{A_{n}\right\}$ converges almost surely to a finite limit as $n$ tends to infinity.
3. Convergence in probability

First we state and prove two lemmas.

Lemma 1. If (6) is satisfied and

$$
\begin{gather*}
d_{n}^{1 / 2} \sum_{j=0}^{N(n)} G_{j}^{2} \xrightarrow{n} 0,  \tag{21}\\
\sup _{x}\left|t_{n}(x)-c_{n}\right| \sum_{j=0}^{N(n)} G_{j}^{2} \xrightarrow{n} 0, \tag{22}
\end{gather*}
$$

then

$$
\begin{equation*}
\mathrm{E}\left(\hat{h}_{n}(x)-h_{n}(x)\right)^{2} \xrightarrow{n} 0 \tag{23}
\end{equation*}
$$

at every point $x \in \mathfrak{X}$ at which

$$
\begin{equation*}
c_{n}\left[\sum_{j=0}^{N(n)} a_{j} g_{j}(x)-h(x)\right] \xrightarrow{n} 0 . \tag{24}
\end{equation*}
$$

Proof. Observe

$$
\begin{align*}
\hat{h}_{n}(x)-h_{n}(x)= & \sum_{j=0}^{N(n)}\left(\hat{a}_{j n}-a_{j n}\right) g_{j}(x)+\sum_{j=0}^{N(n)}\left(a_{j n}-c_{n} a_{j}\right) g_{j}(x)  \tag{25}\\
& +c_{n}\left[\sum_{j=0}^{N(n)} a_{j} g_{j}(x)-h(x)\right]+\left(c_{n} h(x)-h_{n}(x)\right) .
\end{align*}
$$

By Cauchy's inequality, the expectation of the squared first term on the right-hand side in (25) is not greater than

$$
\begin{equation*}
\sum_{j=0}^{N(n)} \mathrm{E}\left(\hat{a}_{j n}-a_{j n}\right)^{2} \sum_{j=0}^{N(n)} G_{j}^{2} \leqq d_{n}\left[\sum_{j=0}^{N(n)} G_{j}^{2}\right]^{2} . \tag{26}
\end{equation*}
$$

Since

$$
\begin{aligned}
\left|a_{j n}-c_{n} a_{j}\right| & =\left|\int\left(t_{n}(x)-c_{n}\right) R(x) g_{j}(x) f(x) d x\right| \\
& \leqq G_{j} \sup _{x}\left|t_{n}(x)-c_{n}\right| \int|R(x)| f(x) d x
\end{aligned}
$$

the absolute value of the second term in (25) does not exceed

$$
\begin{equation*}
\left(\sup _{x}\left|t_{n}(x)-c_{n}\right|\right) \sum_{j=0}^{N(n)} G_{j}^{2} \int|R(x)| f(x) d x . \tag{27}
\end{equation*}
$$

Moreover, the absolute value of the fourth term in (25) is majorized by

$$
\begin{equation*}
|R(x)| f(x) \sup _{x}\left|t_{n}(x)-c_{n}\right| \tag{28}
\end{equation*}
$$

In view of (25), (26), (27) and (28) the proof is complete.
Lemma 2. If

$$
c_{n} n^{-1 / 2} \sum_{j=0}^{M(n)} G_{j}^{2} \xrightarrow{n} 0,
$$

then

$$
c_{n}^{2} \mathrm{E}\left(\hat{f}_{n}(x)-f(x)\right)^{2} \xrightarrow{n} 0
$$

at every point $x \in \mathfrak{X}$, at which

$$
c_{n}\left[\sum_{j=0}^{M(n)} b_{j} g_{j}(x)-f(x)\right] \xrightarrow{n} 0 .
$$

Proof. Obviously

$$
\begin{equation*}
\hat{f}_{n}(x)-f(x)=\sum_{j=0}^{M(n)}\left(\hat{b}_{j n}-b_{j}\right) g_{j}(x)+\left[\sum_{j=0}^{M(n)} b_{j} g_{j}(x)-f(x)\right] . \tag{29}
\end{equation*}
$$

Since $\mathrm{E}\left(\hat{b}_{j n}-b_{j}\right)^{2} \leqq G_{j}^{2} / n$, the expectation of the squared first term in (29) is not greater than

$$
\sum_{j=0}^{M(n)} \mathrm{E}\left(\hat{b}_{j n}-b_{j}\right)^{2} \sum_{j=0}^{M(n)} G_{j}^{2} \leqq n^{-1}\left[\sum_{j=0}^{M(n)} G_{j}^{2}\right]^{2},
$$

which completes the proof.
Combining Lemmas 1 and 2, we get the main result of this section.
Theorem 1. Let (6), (21) and (22) be satisfied. Let, moreover,

$$
\begin{equation*}
\left(\left|c_{n}\right|+1\right) n^{-1 / 2} \sum_{j=0}^{M(n)} G_{j}^{3} \xrightarrow{n} 0 . \tag{30}
\end{equation*}
$$

Then

$$
\left|\hat{R}_{n}(x)-R_{n}(x)\right| \xrightarrow{n} 0
$$

in probability at every point $x \in \mathfrak{X}$ at which $f(x)>0$, (24) holds and

$$
\begin{equation*}
\left(\left|c_{n}\right|+1\right)\left[\sum_{j=0}^{M(n)} b_{j} g_{j}(x)-f(x)\right] \xrightarrow{n} 0 \tag{31}
\end{equation*}
$$

Proof. The result follows from the equality

$$
\begin{align*}
\hat{R}_{n}(x)-R_{n}(x)= & \left(\hat{h}_{n}(x)-h_{n}(x)\right) / \hat{f}_{n}(x)  \tag{32}\\
& +h_{n}(x)\left(f(x)-\hat{f}_{n}(x)\right) / f(x) \hat{f}_{n}(x)
\end{align*}
$$

4. Almost sure convergence

As in the previous section we start with two lemmas.
Lemma 3. Assume that conditions of Lemma 1 are satisfied. Furthermore, let

$$
\begin{equation*}
\sum_{n=1}^{\infty} \gamma_{n}^{2}\left(1+c_{n}^{2}\right)\left[\sum_{j=0}^{N(n)} G_{j}^{2}\right]^{2}<\infty, \tag{33}
\end{equation*}
$$

and let

$$
\begin{align*}
& \sum_{n=1}^{\infty} \gamma_{n} d_{n}\left[\sum_{j=0}^{N(n)} G_{j}^{2}\right]^{2}<\infty  \tag{34}\\
& \sum_{n=1}^{\infty} d_{n} \sum_{j=0}^{N(n)} G_{j}^{2} \sum_{k=N(n)}^{N(n+1)} G_{k}^{2}<\infty \tag{35}
\end{align*}
$$

Then

$$
\begin{equation*}
\left|\hat{h}_{n}(x)-h_{n}(x)\right| \xrightarrow{n} 0 \tag{36}
\end{equation*}
$$

with probability one, at every point $x \in \mathfrak{X}$ at which (24) holds.
Proof. By (25), (27) and (28) it suffices to show that

$$
\begin{equation*}
\sum_{j=0}^{N(n)}\left(\hat{a}_{j n}-a_{j n}\right) g_{j}(x)=\sum_{j=0}^{N(n)}\left(\hat{a}_{j n}-\mathrm{E} \hat{a}_{j n}\right) g_{j}(x)+\sum_{j=0}^{N(n)}\left(\mathrm{E} \hat{a}_{j n}-a_{j n}\right) g_{j}(x) \tag{37}
\end{equation*}
$$

converges to zero with probability one as $n$ tends to infinity. Now we are concerned with the second term in (37). The absolute value of the term does not exceed

$$
\begin{equation*}
\left[\sum_{j=0}^{N(n)}\left(\mathrm{E} \hat{a}_{j n}-a_{j n}\right)^{2} \sum_{k=0}^{N(n)} G_{k}^{2}\right]^{1 / 2} \leqq\left[\sum_{j=0}^{N(n)} \mathrm{E}\left(\hat{a}_{j n}-a_{j n}\right)^{2} \sum_{k=0}^{N(n)} G_{k}^{2}\right]^{1 / 2} \leqq d_{n}^{1 / 2} \sum_{j=0}^{N(n)} G_{j}^{2} . \tag{38}
\end{equation*}
$$

By making use of Lemma $B$ we prove the convergence of the first term in (37). Denote

$$
V_{n}(x)=\sum_{j=0}^{N(n)}\left(\hat{a}_{j n}-\mathrm{E} \hat{a}_{j n}\right) g_{j}(x)
$$

Observe

$$
V_{n+1}(x)=V_{n}(x)+u_{n}(x)+w_{n}(x),
$$

where

$$
\begin{aligned}
& u_{n}(x)=\gamma_{n} \sum_{j=0}^{N(n+1)}\left[Y_{n+1} g_{j}\left(X_{n+1}\right)-\mathrm{E}\left(Y_{n+1} g_{j}\left(X_{n+1}\right)\right)\right] g_{j}(x), \\
& w_{n}(x)=\left(1-\gamma_{n}\right) \sum_{j=N(n)+1}^{N(n+1)}\left(\hat{a}_{j n}-\mathrm{E} \hat{a}_{j n}\right) g_{j}(x)-\gamma_{n} \sum_{j=0}^{N(n)}\left(\hat{a}_{j n}-\mathrm{E} \hat{a}_{j n}\right) g_{j}(x) .
\end{aligned}
$$

Thus,

$$
\mathrm{E}\left(V_{n+1}^{2}(x) \mid X_{1}, Y_{1}, X_{2}, Y_{2}, \cdots, X_{n}, Y_{n}\right)=V_{n}^{2}(x)+B_{n}(x),
$$

where

$$
B_{n}(x)=\mathrm{E} u_{n}^{2}(x)+w_{n}^{2}(x)+2 V_{n}(x) w_{n}(x)
$$

Now it will be verified that $\sum_{n=1}^{\infty} \mathrm{E}\left|B_{n}(x)\right|<\infty$ for every $x \in \mathcal{X}$. By Cauchy's inequality and (7) we obtain

$$
\begin{align*}
\mathrm{E} u_{n}^{2}(x) & \leqq \gamma_{n}^{2} \sum_{j=0}^{N(n+1)} \operatorname{var}\left[Y_{n+1} g_{j}\left(X_{n+1}\right)\right] \sum_{j=0}^{N(n+1)} G_{j}^{2}  \tag{39}\\
& \leqq \gamma_{n}^{2} \mathrm{E} Y_{n+1}^{2}\left[\sum_{j=0}^{N(n+1)} G_{j}^{2}\right]^{2} \leqq \gamma_{n}^{2}\left(K_{1}+K_{2} c_{n+1}^{2}\right)\left[\sum_{j=0}^{N(n+1)} G_{j}^{2}\right]^{2}
\end{align*}
$$

Using Cauchy's inequality again we get

$$
\begin{aligned}
w_{n}^{2}(x) \leqq & 2\left(1-\gamma_{n}\right)^{2} \sum_{j=N(n)}^{N(n+1)}\left(\hat{a}_{j n}-\mathrm{E} \hat{a}_{j n}\right)^{2} \sum_{j=N(n)}^{N(n+1)} G_{j}^{2} \\
& +2 \gamma_{n}^{2} \sum_{j=0}^{N(n+1)}\left(\hat{a}_{j n}-\mathrm{E} \hat{a}_{j n}\right)^{2} \sum_{j=0}^{N(n+1)} G_{j}^{2} .
\end{aligned}
$$

Therefore

$$
\begin{equation*}
\mathrm{E} w_{n}^{2}(x) \leqq 2\left(1-\gamma_{n}\right)^{2} d_{n}\left[\sum_{j=N(n)}^{N(n+1)} G_{j}^{2}\right]^{2}+2 \gamma_{n}^{2} d_{n}\left[\sum_{j=0}^{N(n+1)} G_{j}^{2}\right]^{2} \tag{40}
\end{equation*}
$$

In turn

$$
\begin{aligned}
& \left|V_{n}(x) w_{n}(x)\right| \leqq \gamma_{n}\left[\sum_{j=0}^{N(n)}\left(\hat{a}_{j n}-\mathrm{E} \hat{a}_{j n}\right) g_{j}(x)\right]^{2} \\
& \quad+\left|\left(1-\gamma_{n}\right) \sum_{j=0}^{N(n)}\left(\hat{a}_{j n}-\mathrm{E} \hat{a}_{j n}\right) g_{j}(x) \sum_{j=N(n)}^{N(n+1)}\left(\hat{a}_{j n}-\mathrm{E} \hat{a}_{j n}\right) g_{j}(x)\right|
\end{aligned}
$$

Applying Schwartz's and Cauchy's inequalities one gets

$$
\begin{align*}
\mathrm{E}\left|V_{n}(x) w_{n}(x)\right| \leqq & \gamma_{n} \sum_{j=0}^{N(n)} \mathrm{E}\left(\hat{a}_{j n}-a_{j n}\right)^{2} \sum_{j=0}^{N(n)} G_{j}^{2}  \tag{41}\\
+ & \left|1-\gamma_{n}\right|\left[\sum_{j=0}^{N(n)} \mathrm{E}\left(\hat{a}_{j n}-a_{j n}\right)^{2} \sum_{j=0}^{N(n)} G_{j}^{2}\right. \\
& \left.\quad \times \sum_{j=N(n)}^{N(n+1)} \mathrm{E}\left(\hat{a}_{j n}-a_{j n}\right)^{2} \sum_{j=N(n)}^{N(n+1)} G_{j}^{2}\right]^{1 / 2} \\
\leqq & \gamma_{n} d_{n}\left[\sum_{j=0}^{N(n)} G_{j}^{2}\right]^{2}+\left|1-\gamma_{n}\right| d_{n} \sum_{j=0}^{N(n)} G_{j}^{2} \sum_{j=N(n)}^{N(n+1)} G_{j}^{2} .
\end{align*}
$$

In view of assumptions (33), (34) and (35), inequalities (39), (40) and (41) imply that $\sum_{n=1}^{\infty} \mathrm{E}\left|B_{n}(x)\right|$ is finite for every $x \in \mathscr{X}$. Consequently $V_{n}^{2}(x)$ converges to a finite limit almost surely as $n$ tends to infinity. By Lemma 1 the limit is zero. The proof has been completed.

Lemma 4. If

$$
\begin{equation*}
\sum_{n=1}^{\infty} n^{-2} c_{n}^{2}\left[\sum_{j=0}^{M(n)} G_{j}^{2}\right]^{2}<\infty, \tag{42}
\end{equation*}
$$

then

$$
\begin{equation*}
c_{n}\left|\hat{f}_{n}(x)-f(x)\right| \xrightarrow{n} 0 \tag{43}
\end{equation*}
$$

with probability one at every point at which (31) holds.
Proof. By virtue of Lemma 2 it suffices to show that

$$
c_{n}\left(\hat{f}_{n}(x)-\mathrm{E} \hat{f}_{n}(x)\right)=c_{n} n^{-1} \sum_{i=1}^{n} \sum_{j=0}^{n /(n)}\left(g_{j}\left(X_{i}\right)-\mathrm{E} g_{j}\left(X_{i}\right)\right) g_{j}(x)
$$

converges to zero with probability one as $n$ tends to infinity. Let

$$
\xi_{n}(x)=c_{n} \sum_{j=0}^{M(n)}\left(g_{j}\left(X_{n}\right)-\mathrm{E} g_{j}\left(X_{n}\right)\right) g_{j}(x)
$$

Obviously

$$
\mathrm{E} \xi_{n}^{2}(x) \leqq c_{n}^{2} \sum_{j=0}^{M(n)} \operatorname{var} g_{j}\left(X_{n}\right) \sum_{j=0}^{M(n)} g_{j}^{2}(x) \leqq c_{n}^{2}\left[\sum_{j=0}^{M(n)} G_{j}^{2}\right]^{2} .
$$

By virtue of the Kolmogorov strong law of large numbers (see Doob [7], p. 127) and (42), the proof is complete.

Finally we are able to establish the strong consistency of (15).
Theorem 2. Let (6), (33), (34) and (35) be satisfied. Let, moreover,

$$
\begin{equation*}
\sum_{n=1}^{\infty}\left(c_{n}^{2}+1\right) n^{-2}\left[\sum_{j=0}^{M(n)} G_{j}^{2}\right]^{2}<\infty \tag{44}
\end{equation*}
$$

Then

$$
\left|\hat{R}_{n}(x)-R_{n}(x)\right| \xrightarrow{n} 0
$$

w.p. 1 at every point $x \in \mathfrak{X}$ at which $f(x)>0$, (24) and (31) hold.
5. The rate of the convergence of $\left\{d_{n}\right\}$

Here we show that the sequence $\left\{d_{n}\right\}$ defined by (20) converges to zero and is bounded by a power sequence. While proving Theorem 3 we use arguments similar to those used in Dupač [8].

Theorem 3. Let conditions (6) and (7) be satisfied and let

$$
\begin{align*}
& \gamma_{n}=\delta n^{-r}, \quad \delta>0,0<r<1,  \tag{45}\\
& \sup _{x}\left|t_{n+1}(x)-t_{n}(x)\right|=O\left(n^{-p}\right), \quad r<p,  \tag{46}\\
& c_{n}=O\left(n^{q}\right), \quad 2 q^{+}<r, \tag{47}
\end{align*}
$$

where $q^{+}=\max (0, q)$. Then

$$
\begin{equation*}
d_{n}=O\left(n^{-s}\right), \tag{48}
\end{equation*}
$$

where

$$
s= \begin{cases}2(p-r) & \text { for } r \geqq 2\left(p+q^{+}\right) / 3 \\ r-2 q^{+} & \text {otherwise } .\end{cases}
$$

Proof. To begin with, let us observe that

$$
\begin{equation*}
\mathrm{E}\left\{Y_{n+1} g_{j}\left(X_{n+1}\right) \mid \hat{a}_{j 1}, \cdots, \hat{a}_{j n}\right\}=a_{j, n+1} \tag{49}
\end{equation*}
$$

By (7), (8) and (47),

$$
\begin{equation*}
\operatorname{var}\left[Y_{n+1} g_{j}\left(X_{n+1}\right) \mid \hat{a}_{j 1}, \cdots, \hat{a}_{j n}\right] \leqq G_{j}^{2}\left(K_{1}+K_{3} n^{2 q}\right) \tag{50}
\end{equation*}
$$

From (3), (6), (8), (10) and (46) it follows that

$$
\begin{equation*}
\left|a_{j, n+1}-a_{j n}\right| \leqq G_{j} \sup _{x}\left|t_{n+1}(x)-t_{n}(x)\right| \int|R(x)| f(x) d x \leqq K_{4} G_{,} n^{-p} . \tag{51}
\end{equation*}
$$

Subtracting $a_{j, n+1}$ on both sides of (11) we get

$$
\begin{aligned}
\hat{a}_{j, n+1}-a_{j, n+1}= & \left(1-\gamma_{n}\right)\left(\hat{a}_{j n}-a_{j n}\right)-\gamma_{n}\left(a_{j, n+1}-Y_{n+1} g_{j}\left(X_{n+1}\right)\right) \\
& -\left(1-\gamma_{n}\right)\left(a_{j, n+1}-a_{j n}\right) .
\end{aligned}
$$

Now after squaring and taking conditional expectations, using (49), (50) and (51) we obtain

$$
\begin{align*}
& \mathrm{E}\left\{\left(\hat{a}_{j, n+1}-a_{j, n+1}\right)^{2} \mid \hat{a}_{j 1}, \cdots, \hat{a}_{j n}\right\}  \tag{52}\\
& \quad \leqq\left(1-\gamma_{n}\right)\left(\hat{a}_{j n}-a_{j n}\right)^{2}+K_{4} G_{j} n^{-p}\left|\hat{a}_{j n}-a_{j n}\right| \\
& \quad+G_{j}^{2}\left(K_{1} \gamma_{n}^{2}+K_{3} \gamma_{n}^{2} n^{2 q}+K_{5} n^{-2 p}\right),
\end{align*}
$$

for sufficiently large $n$ satisfying $\left|1-\gamma_{n}\right| \leqq 1$. It is clear that for every $\varepsilon>0$ and every random variable $Z$ with finite variance

$$
2 \mathrm{E}|Z| \leqq \varepsilon^{-1}+\varepsilon \mathrm{E} Z^{2} .
$$

Thus, choosing $\varepsilon=K_{6} G_{j}^{-1} \gamma_{n} n^{p}$ (for some small $K_{6}$ ) one gets

$$
\begin{equation*}
2 G_{j} n^{-p} \mathrm{E}\left|\hat{a}_{j n}-a_{j n}\right| \leqq K_{6}^{-1} G_{j}^{2} \gamma_{n}^{-1} n^{-2 p}+K_{6} \gamma_{n} \mathrm{E}\left(\hat{a}_{j n}-a_{j n}\right)^{2} . \tag{53}
\end{equation*}
$$

Now taking unconditional expectation on both sides of (52) and using (53) one obtains

$$
\begin{aligned}
\mathrm{E}\left(\hat{a}_{j, n+1}-a_{j, n+1}\right)^{2} \leqq & \left(1-K_{7} n^{-r}\right) \mathrm{E}\left(\hat{a}_{j n}-a_{j n}\right)^{2} \\
& +G_{j}^{2}\left(K_{8} n^{-2 r}+K_{9} n^{2(q-r)}+K_{10} n^{r-2 p}\right)
\end{aligned}
$$

for sufficiently large $n$. Thus,

$$
\begin{equation*}
\mathrm{E}\left(\hat{a}_{j, n+1}-a_{j, n+1}\right)^{2} \leqq\left(1-K_{7} n^{\sim r}\right) \mathrm{E}\left(\hat{a}_{j n}-a_{j n}\right)^{2}+K_{11} G_{j}^{2} n^{-(r+s)} . \tag{54}
\end{equation*}
$$

Hence

$$
d_{n+1} \leqq\left(1-K_{7} n^{-r}\right) d_{n}+K_{11} n^{-(r+s)}
$$

Since $\hat{a}_{j 0}=0, d_{1}$ is finite. A straightforward application of Lemma A completes the proof.

From Theorems 1, 2 and 3 one easily gets the next two concluding ones.

Theorem 4. Let (6), (7) and (22) hold. Let, moreover, (45), (46) and (47) be satisfied. If

$$
\begin{align*}
& \left.n^{\left(q^{+}-1 / 2 / 2\right.}\right) \sum_{j=0}^{M(n)} G_{j}^{3} \xrightarrow{n} 0,  \tag{55}\\
& n^{-3 / 2} \sum_{j=0}^{N(n)} G_{j}^{2} \xrightarrow{n} 0, \tag{56}
\end{align*}
$$

then

$$
\left|\hat{R}_{n}(x)-R_{n}(x)\right| \xrightarrow{n} 0
$$

in probability at every $x \in \mathscr{X}$ at which $f(x)>0$,

$$
\begin{equation*}
\sum_{j=0}^{N(n)} a_{j} g_{j}(x)-h(x)=o\left(n^{-q}\right) \tag{57}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{j=0}^{M(n)} b_{f} g_{f}(x)-f(x)=o\left(n^{-q^{+}}\right) . \tag{58}
\end{equation*}
$$

Theorem 5. Let (6), (7) and (22) be satisfied. Let, moreover, (45), (46), (47) and (56) be fulfilled. If

$$
\begin{equation*}
\sum_{n=1}^{\infty} n^{-2\left(1-q^{+}\right)}\left[\left[\sum_{j=0}^{M(n)} G_{j}^{2}\right]^{2}<\infty\right. \tag{59}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{n=1}^{\infty} n^{-(s+r)}\left[\sum_{j=0}^{N(n)} G_{j}^{2}\right]^{2}<\infty, \tag{60}
\end{equation*}
$$

then

$$
\left.\left|\hat{R}_{n}(x)-R_{n}(x)\right|\right|^{n} 0
$$

almost surely at every $x \in \mathscr{X}$ at which $f(x)>0$ and both (57) and (58) hold.

Proof. Verifying that (33) is implied by (60), (35) is implied by (56) and (60), one can easily complete the proof.

## 6. Examples

The following examples illustrate the fact that conclusions of Theorems 4 and 5 are valid even if $R_{n}$ tends to infinity as $n \rightarrow \infty$.

Let

$$
t_{n}(x)=(1+\rho(x) / n) n^{q},
$$

where

$$
\sup _{x}|\rho(x)|<\infty,
$$

and let $q$ be unknown despite the fact that $0<q \leqq Q$, where $Q$ is a known number. Now $c_{n}=n^{q}$. One can select $\gamma_{n}=\delta n^{-2 / 3}$ and sequences $\{N(n)\}$ and $\{M(n)\}$ of types $\left\{n^{\alpha}\right\}$ and $\left\{n^{\beta}\right\}$, respectively, where $\alpha$ and $\beta$ are positive numbers. This choice is decided by examples given below. In this case (46) and (48) hold with $p=1-q$ and $s=(2-6 q) / 3$.

We shall consider two examples of applicable orthogonal systems.
Hermite orthogonal system
If $\mathscr{X}$ is a real line, we can use a system

$$
g_{j}(x)=\left(2^{j} j!\pi^{1 / 2}\right)^{-1 / 2} e^{-x^{2} / 2} H_{j}(x),
$$

where

$$
H_{0}(x)=1, \quad H_{j}(x)=(-1)^{j} e^{x^{2}}\left(d^{j} e^{-x^{2}} / d x^{j}\right), \quad j=1,2, \cdots
$$

are Hermite polynomials. It can be found in Szegö ([19], p. 242) that $G_{j}=K_{12} j^{-1 / 12}$.

Suppose that series (12) and (18) converge at a point $x$ to $f(x)$ and $h(x)$, respectively. Various conditions for the pointwise convergence of orthogonal expansions with the Hermite system can be found in Sansone [16]. Nevertheless, we mention here that the series under consideration converge to $f(x)$ and $h(x)$ at every differentiability point of $f$ and $h$, respectively.

One can verify that conditions (22), (55) and (56) of Theorem 4 imposed on sequences $\{N(n)\}$ and $\{M(n)\}$ are satisfied for $\alpha<(2-6 Q) / 5$ and $\beta<(3-6 Q) / 5$. In turn, restrictions (22), (59) and (60) of Theorem 5 are fulfilled for $\alpha<(1-6 Q) / 5$ and $\beta<(3-6 Q) / 5$.

We are now interested in assumption (57). Let us assume that the function

$$
\zeta(x)=e^{x^{2} / 2} d^{m}\left(e^{-x^{3} / 2} h(x)\right) / d x^{m}
$$

exists and is square integrable. By Schwartz's [17] result

$$
\left|a_{\jmath}\right| \leqq K_{13}(2 j)^{-m / 2},
$$

where $K_{13}$ is the $L_{2}$ norm of $\zeta$. Hence, at every point $x$ at which the series in (18) converges to $h(x)$,

$$
\begin{aligned}
\left|h(x)-\sum_{j=0}^{N(n)} a_{j} g_{j}(x)\right| & =\left|\sum_{j=N(n)+1}^{\infty} a_{j} g_{j}(x)\right| \\
& \leqq K_{14} \sum_{j=N(n)+1}^{\infty} j^{-(m+1 / 6) / 2} \leqq K_{15} n^{-(m-11 / 6) \alpha / 2},
\end{aligned}
$$

which leads to $\alpha>12 Q /(6 m-11)$. Similar result can be given for (58).

## Legendre orthogonal system

If $\mathfrak{X}=[-1,1]$ we can apply the Legendre system

$$
g_{f}(x)=(j+1 / 2)^{1 / 2} P_{\jmath}(x),
$$

where

$$
P_{0}(x)=1, \quad P_{j}(x)=\left(2^{j} j!\right)^{-1}\left[d^{j}\left(x^{2}-1\right)^{j} / d x^{j}\right], \quad j=1,2, \cdots
$$

are Legendre polynomials. In this case $G_{j}=K_{16} j^{1 / 2}$ (see Szegö ([19], p. 164)).

Criterion for the pointwise convergence of series (12) and (18) are given in Sansone [16]. In particular, the series converge to $f(x)$ and $h(x)$ at every point at which $f$ and $h$ satisfy the Lipschitz condition of a positive order.

By Jackson's theorem, see Sansone ([16], p. 206), if $h$ is of bounded variation,

$$
\left|h(x)-\sum_{j=0}^{n} a_{j} g_{j}(x)\right|=O\left(n^{-1}\right),
$$

at every $x$ in the interior of $\mathcal{X}$. In this case, (57) is satisfied for $\alpha>$
Q. Similar result is true for (58).

The order restrictions of Theorems 4 and 5 are satisfied for $\alpha<$ $(1-3 Q) / 6, \beta<(1-2 Q) / 4$ and $\alpha<(1-6 Q) / 12, \beta<(1-2 Q) / 4$, respectively.

## Acknowledgment

The authors thank the referee for careful reading of the original manuscript.

Techntcal University of Wroceaw
Technical University of Czestochowa
Technical University of Czestochowa

## References

[1] Bosq, D. (1969). Sur J'estimation d'une densite multivariee par une serie de fonctions orthogonales, C. R. Acad. Sci. Paris, A-B, 268, 555-557.
[2] Čencov, N. N. (1962). Evaluation of an unknown distribution density from observations, Soviet Math., 3, 1559-1562.
[3] Chung, K. L. (1954). On a stochastic approximation method, Ann. Math. Statist., 25, 463-483.
[4] Collomb, G. (1977). Quelques proprietes de la methode du noyau pour l'estimation non parametrique de la regression en un point fixe, C. R. Acad. Sci. Paris, A, 285, 289-292.
[5] Devroye, L. P. (1978). The uniform convergence of nearest neighbor regression function estimators and their application in optimization, IEEE Trans. Inf. Theory, 24, 142-151.
[6] Devroye, L. P. and Wagner, T. J. (1980). On the $L_{1}$ convergence of kernel regression function estimators with applications in discrimination, Zeit. Wahrscheinlichkeitsth., 51, 15-25.
[7] Doob, J. L. (1953). Stochastic Processes, John Wiley, New York.
[8] Dupač, V. (1965). A dynamic stochastic approximation method, Ann. Math. Statist., 36, 1695-1702.
[9] Greblicki, W. (1974). Asymptotically optimal probabilistic algorithms for pattern recognition and identification, Scientific Papers of the Institute of Technical Cybernetics of Wrocław Technical University No. 18, Series: Monographs No. 3, Wrocław (in Polish).
[10] Greblicki, W. and Krzyżak, A. (1980). Asymptotic properties of kernel estimates of a regression function, J. Statist. Plann. Inf., 4, 81-90.
[11] Kronmal, R. and Tarter, M. (1968). The estimation of probability densities and cumulatives by Fourier series methods, J. Amer. Statist. Ass., 63, 925-952.
[12] Mirzahmedov, M. A. and Hǎ̌imov, S. A. (1972). On some properties of density estimation, Colloq. Math. Soc. Janos Bolyai, European meeting of statisticians, Budapest, 535-546.
[13] Nadaraya, E. A. (1964). On estimating regression, Theory Prob. Appl., 9, 141-142.
[14] Noda, K. (1976). Estimation of a regression function by the Parzen kernel-type density estimators, Ann. Inst. Statist. Math., 28, A, 221-234.
[15] Rosenblatt, M. (1969). Conditional probability density and regression estimators, Multivariate Analysis II, Academic Press, New York, 25-31.
[16] Sansone, G. (1959). Orthogonal Functions, Interscience Publishers Inc., New York.
[17] Schwartz, S. C. (1967). Estimation of probability density by an orthogonal series, Ann. Math. Statist., 38, 1261-1265.
[18] Stone, C. J. (1977). Consistent nonparametric regression, Ann. Statist., 5, 595-645.
[19] Szegö, G. (1959). Orthogonal Polynomials, Amer. Math. Soc. Coll. Publ., 23.
[20] Van Ryzin, J. (1969). On strong consistency of density estimates, Ann. Math. Statist., 40, 1765-1772.
[21] Wasan, M. T. (1969). Stochastic Approximation, Cambridge University Press.


[^0]:    Key words and phrases: Nonparametric estimation, regression function, nonstationary regression function, orthogonal series, stochastic approximation.

